Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Pyrroles shifts

As expected, the position of the N resonance in pyrrolidine is greatly displaced to high held compared with pyrrole (shifts are 337.3 and 333.6 p.p.m. upheld from external IMHNO3 for pyrrolidine and its A-methyl analogue in cyclohexane). The position is... [Pg.176]

Oligonucleotide (ODN) polypyrrole covalent grafting of ODN onto functionalized pyrrole shift in cyclic voltammetric potentials 66... [Pg.10]

Figure 8.15 shows the C Is spectra of ftiran, pyrrole and thiophene. Owing to the decreasing electronegativity of the order O > N > S the C Is line is shifted to low ionization... [Pg.310]

Annelation of a benzene ring on to the [Z>] faee of the heteroeyelie ring does not have any pronouneed effeet upon the ehemieal shifts of the heteroeyelie protons (cf. Table 8). The rather unexpeeted heteroatom sequenee for shifts to progressively lower field for both H-2 and H-3 remains NHsolvent dependent and as in pyrrole it is also eoupled to the ring protons with Ji,2 = 2.4Hz and Ji,3 = 2.1 Hz. The assignment of the benzenoid protons H-5 and H-6 has eaused some eonfusion in the literature as they have almost... [Pg.8]

The NMR spectral properties of the parent heterocycles are summarized in Table 12. The signal for the pyrrole a-carbon is broadened as a result of coupling with the adjacent nitrogen-14 atom (c/. Section 3.01.4.3). While the frequencies observed for the /3-carbon atoms show a fairly systematic upheld shift with increasing electronegativity of the heteroatom, the shifts for the a-carbon atoms vary irregularly. The shifts are comparable with that for benzene, S 128.7. [Pg.10]

For the NH azoles (Table 3), the two tautomeric forms are usually rapidly equilibrating on the NMR timescale (except for triazole in HMPT). The iV-methyl azoles (Table 4) are fixed chemical shifts are shifted downfield by adjacent nitrogen atoms, but more by a pyridine-like nitrogen than by a pyrrole-like iV-methyl group. [Pg.13]

A pyrrole-like nitrogen in a ring iV-methyl group gives a peak around -220 p.p.m. if adjacent to two carbon atoms one or two neighboring nitrogens shift the peak downfield by about 40 and 90 p.p.m., respectively. [Pg.16]

Small shift values for CH or CHr protons may indicate cyclopropane units. Proton shifts distinguish between alkyne CH (generally Sh = 2.5 - 3.2), alkene CH (generally 4, = 4.5-6) and aro-matic/heteroaromatic CH (Sh = 6 - 9.5), and also between rr-electron-rich (pyrrole, fiiran, thiophene, 4/ = d - 7) and Tt-electron-deficient heteroaromatic compounds (pyridine, Sh= 7.5 - 9.5). [Pg.11]

In contrast to H shifts, C shifts cannot in general be used to distinguish between aromatic and heteroaromatic compounds on the one hand and alkenes on the other (Table 2.2). Cyclopropane carbon atoms stand out, however, by showing particularly small shifts in both the C and the H NMR spectra. By analogy with their proton resonances, the C chemical shifts of k electron-deficient heteroaromatics (pyridine type) are larger than those of k electron-rieh heteroaromatic rings (pyrrole type). [Pg.13]

Apart from the A-methyl group, three double-bond equivalents and three multiplets remain in the chemical shift range appropriate for electron rich heteroaromatics, Sh = 6.2 to 6.9. A-Methyl-pyrrole is such a compound. Since in the multiplets at Sh = 6.25 and 6.80 the Jhh coupling of 4.0 Hz is appropriate for pyrrole protons in the 3- and 4-positions, the pyrrole ring is deduced to be substituted in the 2-position. [Pg.181]

In 1970, Hiraoka reported that 2-cyanopyrrole, irradiated in methanol with a low-pressure mercury arc for 20 h, gave a mixture of 3-cyanopyrrole and pyrrole-2-carbaldehyde [70JCS(CC)1306]. l-Methyl-2-cyanopyrrole (38) also gave this reaction (Scheme 15) [71JCS(CC)1610]. In this case, the author isolated the product of the isomerization 39, the product of the shift in C-2 of the IV-methy 1 group 40, and a third product that was assumed to be derived from the addition of methanol to the Dewar pyrrole 41. The reaction depends on the temperature used in fact, no reaction occurred when the reaction was performed at -68°C. This result is in agreement with the presence of a thermal-activated step [78JCS(CC)131]. More... [Pg.53]

All these data seem to be in agreement with a mechanism depicted in Scheme 16, where the thermal-activated step is the 1,2-sigmatropic shift between the Dewar pyrroles. [Pg.54]

The 21//,22//-tautomer 2 with hydrogens at adjacent pyrrole rings is less stable because of penetration of each hydrogen into the van der Waals sphere of the other. However, NMR studies with unsymmetrically substituted porphyrins at low temperature have allowed the observation of both tautomers 1 and 2. The kinetic parameters of tautomerism investigated by NMR measurements at different temperatures are consistent with a two-step process forming 3 from 1 via 2 rather than a concerted two-hydrogen shift which could form 3 from 1 directly. [Pg.578]

Note that the first example bears out the stereochemical prediction made earlier. Only the two isomers shown were formed. In the second example, migration can > continue around the ring. Migrations of this kind are called circumambulatory rearrangements. Such migrations are known for cyclopentadiene, pyrrole, and phosphole derivatives.[1,5] Hydrogen shifts are also known with vinyl aziridines." ... [Pg.1440]

H NMR spectroscopy studies of iron(IIl) a-alkyl and o-aryl porphyrins have been very important in elucidating spin states. Alkyl and most aryl complexes with simple porphyrin ligands (OEP, TPP, or TTP) are low spin, S — I /2 species. NMR spectra for the tetraarylporphyrin derivatives show upheld resonances for the porphyrin pyrrole protons (ca. — 18 to —35 ppm), and alternating upfield and downfield hyperfine shifts for the axial alkyl or aryl resonances. For -alkyl complexes, the a-protons show dramatic downfield shifts (to ca. 600 ppm), upfield shifts for the /3-protons (—25 to — 160 ppm) and downfield shifts for the y-protons (12 ppm). The cr-protons of alkyliron porphyrins are not usually detected as a result of their large downfield shift and broad resonance. These protons were first detected by deuterium NMR in the dcuterated complexes Fe(TPP)CD3 (532 ppm) and Fe(TPP)CD2CDi (562, -117 ppm). ... [Pg.248]

Pyrrole-2-carboxylate decarboxylase attains equilibrium in the course of either decarboxylation or carboxylation (Fig. 8). The decarboxylation of 100 mM pyrrole-2-carboxylate was in equilibrium after Ih, resulting in an equilibrium constant of 0.3 M." Due to this balanced equilibrium, the enzyme also catalyzed the reverse carboxylation of pyrrole after the addition of HCO3, leading to a similar equilibrium constant of 0.4 M and a shift of the [pyrrole]/[pyrrole-2-carboxylate] ratio toward the acid. [Pg.96]


See other pages where Pyrroles shifts is mentioned: [Pg.389]    [Pg.389]    [Pg.67]    [Pg.354]    [Pg.8]    [Pg.13]    [Pg.13]    [Pg.14]    [Pg.16]    [Pg.30]    [Pg.30]    [Pg.30]    [Pg.33]    [Pg.34]    [Pg.36]    [Pg.37]    [Pg.16]    [Pg.33]    [Pg.195]    [Pg.67]    [Pg.201]    [Pg.513]    [Pg.8]    [Pg.189]    [Pg.88]    [Pg.180]    [Pg.9]    [Pg.76]    [Pg.578]    [Pg.673]    [Pg.686]    [Pg.91]    [Pg.91]    [Pg.138]    [Pg.248]   
See also in sourсe #XX -- [ Pg.282 ]




SEARCH



© 2024 chempedia.info