Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Proton pump inhibitors sulfenamide

Proton Pump Inhibitors and Acid Pump Antagonists. Figure 2 Chemical mechanism of irreversible PPIs. PPIs are accumulated in acidic lumen and converted to active sulfenic acid and/or sulfenamide by acid catalysis. These active forms bind to extracytoplasmic cysteines of the gastric H.K-ATPase [3]. [Pg.1033]

At neutral pH proton pump inhibitors are chemically stable, lipid-soluble, weak bases that have no inhibitory activity. In an acid environment they become protonated and a sulfenamide is formed. This sulfenamide binds covalently to the K+H+-ATPase proton pump in the gastric parietal cells, inhibiting this enzyme irreversibly and thus the entry of H+ ions into lumen. Omeprazole metabolizes at a pH of about 3.9. 1, whereas rabeprazole metabolizes at a pH of about 4.9. Secretion of acid only becomes possible again after new molecules of K+H+-ATPase are formed. [Pg.379]

Rabeprazole belongs to substituted benzimidazole proton-pump inhibitors. In gastric parietal cells, rabeprazole is proto-nated, accumulates and is transformed to an active sulfenamide. [Pg.265]

The proton pump inhibitors are lipophilic weak bases (pKa 4-5) and after intestinal absorption diffuse readily across lipid membranes into acidified compartments (eg, the parietal cell canaliculus). The prodrug rapidly becomes protonated within the canaliculus and is concentrated more than 1000-fold by Henderson-Hasselbalch trapping (see Chapter 1). There, it rapidly undergoes a molecular conversion to the active form, a reactive thiophilic sulfenamide cation, which forms a covalent disulfide bond with the H +, K+ ATPase, irreversibly inactivating the enzyme. [Pg.1314]

There are currently four racemic PPIs available on the market omeprazole, lansoprazole, pantoprazole, and rabeprazole. (More recently, enantiomerically pure versions have also been studied and developed, e.g., S-omeprazole, marketed by AstraZeneca as esomeprazole see Chapter II-2.) Proton pump inhibitors share the same core structure, the substituted pyridylmethyl-sulfmyl-benzimidazole, but differ in terms of substituents on this core structure. The absolute requirements of the core structure for the activity of PPIs was not understood until it became clear that the active PPIs are derived from inactive prodrugs the prodrugs are transformed, in the acid-secreting parietal cells, by a unique cascade of chemical structural transformations leading to the active principle, a cyclic sulfenamide species. Inhibition of acid secretion in turn is then achieved by formation of covalent disulfide bonds with key cysteines of the (H+/K+)-ATPase. [Pg.133]

Proton pump inhibitors are prodrugs that require activation in an acid environment. After absorption into the systemic circulation, the prodrug diffuses into the parietal cells of the stomach and accumulates in the acidic secretory canaliculi. Here, it is activated by proton-catalyzed formation of a tetracyclic sulfenamide (Figure 36-2), trapping the drug so that it cannot diffuse back across the... [Pg.621]

FIGURE 36-2 Proton pump inhibitors. A. Inhibitors of gastric H , K -ATPase (proton pump). B. Conversion of omeprazole to a sulfenamide in the acidic secretory canaliculi of the parietal cell. The sulfenamide interacts covalently with sulfhydryl groups in the proton pump, thereby irreversibly inhibiting its activity. The other three proton pump inhibitors undergo analogous conversions. [Pg.623]

The first compound of this class with inhibitory activity on the enzyme and on acid secretion was the 2-(pyridylmethyl)sulfinylbenzimidazole, timopra-zole, and the fust pump inhibitor used clinically was omeprazole, 2-[[3,5-dimethyl-4-methoxypyridin-2-yl] methylsulfinyl]-5-methoxy- lH-benzimidazole. Omeprazole is an acid-activated prodrug. Omeprazole and the other PPIs are accumulated in the acidic space of the parietal cell due to the pKa of the pyridine nitrogen and these are converted due to protonation of the benzimidazole nitrogen first to a thiol-reactive cationic sulfenic acid and then dehydrated to form the sulfenamide (Fig. 1). These thiophilic cations then bind to luminally... [Pg.1032]


See other pages where Proton pump inhibitors sulfenamide is mentioned: [Pg.210]    [Pg.104]    [Pg.114]    [Pg.380]    [Pg.613]    [Pg.336]    [Pg.68]    [Pg.193]   
See also in sourсe #XX -- [ Pg.148 , Pg.149 , Pg.150 ]




SEARCH



Proton pump

Proton pump inhibitors

Sulfenamide

Sulfenamides

© 2024 chempedia.info