Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Proline catalysts rearrangement

Davies and co-workers [12, 35] have exploited one particular aspect of the asymmetric cyclopropanation of alkenes with vinyl diazoacetates, namely, application to substrates suitable for subsequent Cope rearrangement. Cyclopropanation of dienes with predominant cfs-1,2-divinyl diastereoselection makes possible subsequent facile [3,3]-sigmatropic rearrangement with entry to 1,4-cycloheptadienes or bicyclic dienes. Two such examples employing cyclopenta-diene and penta-l,3-diene as substrates and the rhodium(II) prolinate catalyst, Rh2(2S-TBSP)4 in Fig. 1, are shown in Eq. (6) and Eq. (7),respectively cfs-l,2-di-vinylcyclopropanes are presumed to be intermediates in these annulation reactions. In contrast, ethyl diazoacetate and styrene with the prolinate catalyst (Fig. [Pg.527]

A method for highly efficient asymmetric cyclopropanation with control of both relative and absolute stereochemistry uses vinyldiazomethanes and inexpensive a-hydroxy esters as chiral auxiliaries263. This method was also applied for stereoselective preparation of dihydroazulenes. A further improvement of this approach involves an enantioselective construction of seven-membered carbocycles (540) by incorporating an initial asymmetric cyclopropanation step into the tandem cyclopropanation-Cope rearrangement process using rhodium(II)-(5 )-N-[p-(tert-butyl)phenylsulfonyl]prolinate [RhjtS — TBSP)4] 539 as a chiral catalyst (equation 212)264. [Pg.843]

Rhodium(II) (iV-dodecylbenzenesulfonyl)prolinate has been found to act as an effective catalyst for the enantioselective decomposition of vinyldiazoacetates to c -divinylcyclopropanes. Combination of this process with a subsequent Cope rearrangement has resulted in a highly enantioselective synthesis of a variety of cycloheptadienes containing multiple stereogenic centres (see Scheme 40). The tandem... [Pg.521]

Further elaboration of the sulfur cycloadducts could be achieved by the use of a Pummerer rearrangement in the syntheses of 5-(hydroxymethyl)prolines. Oxidation of adduct 298 to sulfoxide 299, followed by treatment with TEA in DCM and quenching with either methanol or benzyl alcohol, delivered the Pummerer products 300 in 57% yield for R = Me and 38% for R = Bn as single diastereoisomers. Raney Ni desulfurization and Pearlman s catalyst mediated hydrogenolysis, for R = Bn furnished the final enantiopure proline derivative (Scheme 3.99). [Pg.233]

The synthesis of various new chiral (o-hydroxyaryl)oxazaphospholidine oxides (139), derived from (S)-proline derivatives, from precursors (140) have been elaborated. This two-step reaction involves an unstable metallated intermediate that undergoes a fast 1,3-rearrangement with the formation of phosphorus-carbon bond. These catalysts have been successfully applied to the catalytic asymmetric borane reduction of numerous prochiral ketones with enantiomeric excess up to 84% ee (Scheme 35). ... [Pg.130]


See other pages where Proline catalysts rearrangement is mentioned: [Pg.264]    [Pg.377]    [Pg.440]    [Pg.342]    [Pg.422]    [Pg.429]    [Pg.347]    [Pg.739]    [Pg.93]    [Pg.385]    [Pg.133]    [Pg.133]    [Pg.779]    [Pg.197]    [Pg.637]   
See also in sourсe #XX -- [ Pg.475 , Pg.476 , Pg.492 ]




SEARCH



Catalysts proline

Prolines, rearrangement

© 2024 chempedia.info