Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Probe definition

The field that generates these eddy currents is, by its nature, anisotropic, i e the eddy current signal response is directionally dependent on probe orientation. This can be used advantageously if one bears in mind that the corroded material one aims to detect usually displays random peaks and valleys, while man-made edges have a definite orientation. [Pg.283]

The sensitivity to defects and other control parameters can be improved by optimizing the choice of the probe. It appears, after study of different types of probes (ferritic, wild steel, insulator) with different geometries (dish, conical,. ..), necessary to underline that the success of a feasibility research, largely depends on a suitable definition of measure collectors, so that they are adapted to the considered problem. [Pg.289]

The sinc fiinction describes the best possible case, with often a much stronger frequency dependence of power output delivered at the probe-head. (It should be noted here that other excitation schemes are possible such as adiabatic passage [9] and stochastic excitation [fO] but these are only infrequently applied.) The excitation/recording of the NMR signal is further complicated as the pulse is then fed into the probe circuit which itself has a frequency response. As a result, a broad line will not only experience non-unifonn irradiation but also the intensity detected per spin at different frequency offsets will depend on this probe response, which depends on the quality factor (0. The quality factor is a measure of the sharpness of the resonance of the probe circuit and one definition is the resonance frequency/haltwidth of the resonance response of the circuit (also = a L/R where L is the inductance and R is the probe resistance). Flence, the width of the frequency response decreases as Q increases so that, typically, for a 2 of 100, the haltwidth of the frequency response at 100 MFIz is about 1 MFIz. Flence, direct FT-piilse observation of broad spectral lines becomes impractical with pulse teclmiques for linewidths greater than 200 kFIz. For a great majority of... [Pg.1471]

Solvent-excluded surfaces correlate with the molecular or Connolly surfaces (there is some confusion in the literature). The definition simply proceeds from another point of view. In this c ase, one assumes to be inside a molecaile and examines how the molecule secs the surrounding solvent molecules. The surface where the probe sphere does not intersect the molecular volume is determined. Thus, the SES embodies the solvent-excluded volume, which is the sum of the van der Waals volume and the interstitial (re-entrant) volume (Figures 2-119. 2-120). [Pg.128]

The time difference (delay) between the measured quantity and the measurement result is called the inertial error. A definition- is the error due to iner tia (mechanical, thermal, etc.) of the parts of a measuring instrument. In ventilation equipment the critical component in the measuring chain, from the dynamic point of view, is often the sensor or the measuring transducer (probe). [Pg.1132]

The use of simple machines has sometimes been taken as a definition of what separates humans from animals however, some primates have been obseiwed fashioning probes out of sticks to pry out or to reach food. One of the most powerful images depicting the... [Pg.785]

Conjugated polymers are centrosymmetric systems where excited states have definite parity of even (A,) or odd (B ) and electric dipole transitions are allowed only between states of opposite parity. The ground state of conjugated polymers is an even parity singlet state, written as the 1A... PM spectroscopy is a linear technique probing dipole allowed one-photon transitions. Non linear spectroscopies complement these measurements as they can couple to dipole-forbidden trail-... [Pg.422]

The need for a more definitive identification of HPLC eluates than that provided by retention times alone has been discussed previously, as have the incompatibilities between the operating characteristics of liquid chromatography and mass spectrometry. The combination of the two techniques was originally achieved by the physical isolation of fractions as they eluted from an HPLC column, followed by the removal of the mobile phase, usually by evaporation, and transfer of the analyte(s) into the mass spectrometer by using an appropriate probe. [Pg.133]

Learning various kinds of chemical reactions and physical processes is an important element of all chemistry curricula. Earlier in this chapter we conunented on how students could recite the verbal definition of a strong acid but yet failed to select a visual representation that best illustrates the complete ionization of hydrogen chloride molecules. Another part of this study, conducted by Smith and Metz (1996), was probing students microscopic representation of the reaction... [Pg.67]

The precision of the data is not such as to allow non-dipole interactions to be definitively ruled out, and more detailed study of this topic by careful measurement of the full angular distribution, as opposed to detection at a single angle, will be required to provide a complete probe. In the meantime a clear observation that enantiomer PECD curves have a mirror-image relationship... [Pg.312]

By definition, the e]q>erlmentally determined average mobile phase velocity Is equal to the ratio of the column length to the retention time of an unretalned solute. The value obtained will depend on the ability of the unretalned solute to probe the pore volume. In liquid chromatography, a value for the Interstitial velocity can be obtained by using an unretalned solute that Is excluded from the pore volume for the measurement (section 4.4.4). The Interstitial velocity Is probably more fundamentally significant than the chromatographic velocity in liquid chromatography (39). [Pg.10]

Trying to determine which column is ideal for a specific analysis can be difficult with over 1000 different columns on the market [74]. A proper choice implies a definition of parameters such as column material, stationary phase (polarity), i.d., film thickness and column length. Guides to column selection are available [74,75]. The most important consideration is the stationary phase. When selecting an i.d., sample concentration and instrumentation must be considered. If the concentration of the sample exceeds the column s capacity, then loss of resolution, poor reproducibility and peak distortion will result. Film thickness has a direct effect on retention and the elution temperature for each sample compound. Longer columns provide more resolving probe, increase analysis times and cost. [Pg.185]

The magnetic field seen by the probe neutron is solely due to the magnetic dipole moment density of the unpaired electrons. In other words, the magnetisation density is simply related to the electron spin density by a multiplicative factor, and there is no ambiguity in its definition. [Pg.256]


See other pages where Probe definition is mentioned: [Pg.44]    [Pg.460]    [Pg.755]    [Pg.726]    [Pg.159]    [Pg.44]    [Pg.460]    [Pg.755]    [Pg.726]    [Pg.159]    [Pg.177]    [Pg.127]    [Pg.278]    [Pg.1632]    [Pg.389]    [Pg.390]    [Pg.2]    [Pg.355]    [Pg.362]    [Pg.2]    [Pg.463]    [Pg.286]    [Pg.34]    [Pg.554]    [Pg.564]    [Pg.576]    [Pg.70]    [Pg.406]    [Pg.413]    [Pg.585]    [Pg.263]    [Pg.150]    [Pg.182]    [Pg.309]    [Pg.341]    [Pg.117]   
See also in sourсe #XX -- [ Pg.43 , Pg.109 ]




SEARCH



Fluorescent probe, definition

© 2024 chempedia.info