Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Pressure oscillation radial mode

Fig. 13.21 shows another example of oscillatory burning of an RDX-AP composite propellant containing 0.40% A1 particles. The combustion pressure chosen for the burning was 4.5 MPa. The DC component trace indicates that the onset of the instability is 0.31 s after ignition, and that the instability lasts for 0.67 s. The pressure instability then suddenly ceases and the pressure returns to the designed pressure of 4.5 MPa. Close examination of the anomalous bandpass-filtered pressure traces reveals that the excited frequencies in the circular port are between 10 kHz and 30 kHz. The AC components below 10 kHz and above 30 kHz are not excited, as shown in Fig. 13.21. The frequency spectrum of the observed combustion instability is shown in Fig. 13.22. Here, the calculated frequency of the standing waves in the rocket motor is shown as a function of the inner diameter of the port and frequency. The sonic speed is assumed to be 1000 m s and I = 0.25 m. The most excited frequency is 25 kHz, followed by 18 kHz and 32 kHz. When the observed frequencies are compared with the calculated acoustic frequencies shown in Fig. 13.23, the dominant frequency is seen to be that of the first radial mode, with possible inclusion of the second and third tangential modes. The increased DC pressure between 0.31 s and 0.67 s is considered to be caused by a velocity-coupled oscillatory combustion. Such a velocity-coupled oscillation tends to induce erosive burning along the port surface. The maximum amplitude of the AC component pressure is 3.67 MPa between 20 kHz and 30 kHz. - ... Fig. 13.21 shows another example of oscillatory burning of an RDX-AP composite propellant containing 0.40% A1 particles. The combustion pressure chosen for the burning was 4.5 MPa. The DC component trace indicates that the onset of the instability is 0.31 s after ignition, and that the instability lasts for 0.67 s. The pressure instability then suddenly ceases and the pressure returns to the designed pressure of 4.5 MPa. Close examination of the anomalous bandpass-filtered pressure traces reveals that the excited frequencies in the circular port are between 10 kHz and 30 kHz. The AC components below 10 kHz and above 30 kHz are not excited, as shown in Fig. 13.21. The frequency spectrum of the observed combustion instability is shown in Fig. 13.22. Here, the calculated frequency of the standing waves in the rocket motor is shown as a function of the inner diameter of the port and frequency. The sonic speed is assumed to be 1000 m s and I = 0.25 m. The most excited frequency is 25 kHz, followed by 18 kHz and 32 kHz. When the observed frequencies are compared with the calculated acoustic frequencies shown in Fig. 13.23, the dominant frequency is seen to be that of the first radial mode, with possible inclusion of the second and third tangential modes. The increased DC pressure between 0.31 s and 0.67 s is considered to be caused by a velocity-coupled oscillatory combustion. Such a velocity-coupled oscillation tends to induce erosive burning along the port surface. The maximum amplitude of the AC component pressure is 3.67 MPa between 20 kHz and 30 kHz. - ...
The phenomenon of unstable combustion results from a self-amplifying interaction between combustion processes and the. acoustic oscillations of the gas within the rocket motor. The unexpected appearance of combustion instability in any rocket generally terminates its mission thru motor case rupture from overpressure, disruption of guidance systems by severe vibration, or thrust malalignment. Both axial mode and transverse mode instabilities are observed (Ref 45). In the case of the transverse mode the characteristic wave time is usually that required to travel radially around the proplnt cavity whereas the characteristic time for the axial mode is the time for the wave to travel from end to end in the combustion chamber. Double-base proplnts predominantly are prone to transverse wave instabilities and infrequently to those in the axial mode, while composite proplnts appear to go unstable mostly in the axial mode. In the case of transverse instability chamber pressures have been known o double whereas in axial mode instabilities artificially induced by pulsing the chamber pressure at lOOOpsi, the pressure excursion may reach 300—400psi. A review of recent theoretical combustion modeling for combustion instability has been made by Price (Ref 47)... [Pg.927]


See other pages where Pressure oscillation radial mode is mentioned: [Pg.386]    [Pg.386]    [Pg.388]    [Pg.223]    [Pg.14]    [Pg.658]    [Pg.926]    [Pg.378]   
See also in sourсe #XX -- [ Pg.223 ]




SEARCH



Pressure oscillating

Pressure oscillation

Pressure oscillation mode

Radial mode

Radial oscillation

© 2024 chempedia.info