Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Potential energy curves of OH and Calculated photodissociation cross sections

If the photodissociation starts from a / 0 level, the a E) will be an oscillatory curve with v + 1 lobes (v nodes) (see Fig. 7.5). The possibility of destructive interference arising from multiple stationary phase points (e.g. i i,i 2) (Tellinghuisen, 1984) is negligible for direct dissociation because the difference potential V R) — V R) = AV(R) will be single valued (i.e. AV(-Ri) AV(R2)) over the Franck-Condon region, R in R R max- [Pg.482]

The slope of the repulsive potential at R (or at the R values of the two maxima in the v = 1 probability distribution) may be determined from the width of ct(E). The vertical excitation energy of the repulsive state at JR is determined by the E at which a E) reaches its maximum value. In this semi-classical approximation, the repulsive potential curve can be determined from a E) provided that /i(i .) varies no more rapidly than linearly in R (Child, et al., 1983). When a sufficient quantity of cr E) data is obtained from free-bound absorption or emission transitions originating from several bound vibrational levels, it is then also possible to determine the shape of the bound potential (Le Roy, et al., 1988). The /(-dependence of /i(JR) 2 can arise from two sources (i) the /(-dependence of the fractional contributions of several different A-S basis states to a single relativistic adiabatic fi-state (ii) /(-variation of the transition moment between A S basis states arising from the molecule to separated atom evolution of the LCAO characters of the occupied orbitals (iii) /(-variation of the configurational character (Configuration Interaction) of either electronic [Pg.482]

Let us consider how independent /i(i ) 2 effects contribute to the v E) for the hydrogen halides, HX (X = I, Br, and Cl). The curves shown on Fig. 7.6 correspond to relativistic adiabatic potential energy curves (respectively 0 dotted, 0+ dashed, 1 and 2 solid) for HI obtained after diagonalization of the electronic plus spin-orbit Hamiltonians (see Section 3.1.2.2). The strong R-dependence of the electronic transition moment reflects the independence of the relative contributions of the case(a) A-S-Q basis states to each relativistic adiabatic II state. The independent experimental photodissociation cross sections are plotted as solid curves in Fig. 7.7 for HI and HBr. Note that, in addition to the independent variations in the A — S characters of each fl-state caused by All = 0 spin-orbit interactions, all transitions from the X1E+ state to states that dissociate to the X(2P) + H(2S) limit are forbidden in the separated atom limit because they are at best (2Pi/2 — 2P3/2) parity forbidden electric dipole transitions on the X atom. In the case of the continuum region of an attractive potential, the energy dependence of the dissociation cross section exhibits continuity in the Franck-Condon factor density (see Fig. 7.18 Allison and Dalgarno, 1971 Smith, 1971 Allison and Stwalley, 1973). [Pg.483]




SEARCH



And potential energy

Cross potential

Cross section calculation

Crossing energy

Curve crossing

Photodissociating

Photodissociation

Photodissociation cross section

Photodissociation cross section calculation

Photodissociation of

Photodissociations

Potential calculation

Potential curves

Potential energy calculations

Potential energy curve

© 2024 chempedia.info