Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polyethylene terephthalate failure

The agreement between heats of fusion of the same polymer is excellent in some cases, but very poor in others. Obviously, in the case of polypropylene more work needs to be done before the heat of fusion of this substance will be known with any certainty. Heats of fusion calculated from the copolymer equation, Eq. (6), are uniformly low, except in the case of Rybnikar s data. As pointed out by Dole and Wunderlich (1957) this is probably due to the failure to measure the maximum melting of carefully annealed samples. Thus, Dole and Wunderlich (1959) found that the calorimetrically estimated melting point in the case of the carefully annealed copolyester, the 80/20 polyethylene terephthalate and sebacate, was 240° C, whereas the value calculated from Eq. (6) using the heat of fusion estimated from the calorimetric data of Smith and Dole (1956) was 245° C. The unannealed sample had a melting point of ca. 210°. [Pg.235]

The postyield ductile fracture of polymers was extensively investigated (170-183), resulting in a conclusion that the crack is initiated from cavities growing from defects in the drawn material. These cavities have a rhombic shape with the long and short diagonals perpendicular and parallel to the draw direction. These cavities were observed in PVC, PE, polyethylene terephthalate (PET) at room temperature and in PC, PMMA, polyether sulfone (PES), and PS at elevated temperatures. At slow strain rates, the growth of these cavities in a plastically deformed material loaded in tension is stable until the critical size is reached resulting in an unstable catastrophic failure. [Pg.403]

One way to obtain long-term information is through the use of the time-temperature-superposition principle detailed in Chapter 7. Indeed, J. Lohr, (1965) (the California wine maker) while at the NASA Ames Research Center conducted constant strain rate tests from 0.003 to 300 min and from 15° C above the glass transition temperature to 100° C below the glass transition temperature to produce yield stress master curves for poly(methyl methacrylate), polystyrene, polyvinyl chloride, and polyethylene terephthalate. It should not be surprising that time or rate dependent yield (rupture) stress master curves can be developed as yield (rupture) is a single point on a correctly determined isochronous stress-strain curve. Whether linear or nonlinear, the stress is related to the strain through a modulus function at the yield point (mpture) location. As a result, a time dependent master curve for yield, rupture, or other failure parameters should be possible in the same way that a master curve of modulus is possible as demonstrated in Chapter 7 and 10. [Pg.393]

Non-oriented polyethylene terephthalate generally exhibits a sharp transition from ductile to brittle failure. Oriented PET with a planar expansion factor < 2.5 also exhibits this transition, although the transition is less abrupt and becomes wider with increasing planar expansion [773]. [Pg.623]

A = adhesive failure, C - cohesive failure, Al = aluminum, PS = polystyrene, PET= polyethylene terephthalate, PVF - polyvinyl fluoride, CAB = cellulose acetate butyrate, N = nylon 6. [Pg.69]

Based on this analysis it is evident that materials which are biaxially oriented will have good puncture resistance. Highly polar polymers would be resistant to puncture failure because of their tendency to increase in strength when stretched. The addition of randomly dispersed fibrous filler will also add resistance to puncture loads. From some examples such as oriented polyethylene glycol terephthalate (Mylar), vulcanized fiber, and oriented nylon, it is evident that these materials meet one or more of the conditions reviewed. Products and plastics that meet with puncture loading conditions in applications can be reinforced against this type of stress by use of a surface layer of plastic with good puncture resistance. Resistance of the surface layer to puncture will protect the product from puncture loads. An example of this type of application is the addition of an oriented PS layer to foam cups to improve their performance. [Pg.94]

Figure 15.11 Fatigue curves (stress amplitude versus the number of cycles to failure) for poly(ethylene terephthalate) (PET), nylon, polystyrene (PS), poly(methyl methacrylate) (PMMA), polypropylene (PP), polyethylene (PE), and polytetrafluoroethylene (PTFE). The testing frequency was 30 Hz. Figure 15.11 Fatigue curves (stress amplitude versus the number of cycles to failure) for poly(ethylene terephthalate) (PET), nylon, polystyrene (PS), poly(methyl methacrylate) (PMMA), polypropylene (PP), polyethylene (PE), and polytetrafluoroethylene (PTFE). The testing frequency was 30 Hz.

See other pages where Polyethylene terephthalate failure is mentioned: [Pg.135]    [Pg.43]    [Pg.264]    [Pg.321]    [Pg.43]    [Pg.176]    [Pg.46]    [Pg.151]    [Pg.16]    [Pg.306]    [Pg.540]    [Pg.622]    [Pg.756]    [Pg.579]    [Pg.117]    [Pg.128]    [Pg.342]    [Pg.499]    [Pg.1342]    [Pg.146]    [Pg.342]    [Pg.213]    [Pg.8295]    [Pg.153]   


SEARCH



Polyethylene terephthalate)

Polyethylene terephthalates)

© 2024 chempedia.info