Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polyethylene conductivity

Marchenko D, Varykhalov A, Rybkin A, Shikin AM, Rader O (2011) Atmospheric stability and doping protection of noble-metal intercalated graphene on Ni(l 11). Appl Phys Lett 98 122111 Mather PJ, Thomas KM (1997) Carbon black/high density polyethylene conducting composite materials. J Mater Sci 32 1711-1715... [Pg.32]

Figure 4.8 Fraction of amorphous polyethylene as a function of time for crystallizations conducted at indicated temperatures (a) linear time scale and (b) logarithmic scale. Arrows in (b) indicate shifting curves measured at 126 and 130 to 128°C as described in Example 4.4. [Reprinted with permission from R. H. Doremus, B. W. Roberts, and D. Turnbull (Eds.) Growth and Perfection of Crystals, Wiley, New York, 1958.]... Figure 4.8 Fraction of amorphous polyethylene as a function of time for crystallizations conducted at indicated temperatures (a) linear time scale and (b) logarithmic scale. Arrows in (b) indicate shifting curves measured at 126 and 130 to 128°C as described in Example 4.4. [Reprinted with permission from R. H. Doremus, B. W. Roberts, and D. Turnbull (Eds.) Growth and Perfection of Crystals, Wiley, New York, 1958.]...
The spring ensures a soHd closing action and is usually wound from stainless steel wire. The dip tube conducts the product from the container to the valve. It is usually extmded from polyethylene or polypropylene and has an inside diameter of over 2.54 mm, although it can be provided in capillary sizes having diameters down to 0.25 mm. These small tubes are used to reduce flow rate and may function in place of the Hquid metering orifice in the valve housing. [Pg.350]

Building Wires. These wires conduct electricity at relatively low voltages (eg, 110 V and 220 V). Typically they contain a metallic conductor (copper or aluminum) that is insulated with polymeric compounds based on polyethylene or PVC which are appHed over a conductor using an extmder. [Pg.323]

An example of an ionically conductive polymer is polyethylene oxide containing LiC104, which is used as a solid phase electrolyte in batteries. [Pg.887]

A lace of polyethylene is extruded with a diameter of 3 mm and a temperature of 190°C. If its centre-line must be cooled to 70°C before it can be granulated effectively, calculate the required length of the water bath if the water temperature is 20°C. The haul-off speed is 0.4 tn/s and it may be assumed that the heat transfer from the plastic to the water is by conduction only. [Pg.411]

Reinhoudt, Gray, Smit and Veenstra prepared a number of monomer and dimer crowns based on a variety of substituted xylylene units. They first conducted the reaction of 1,2-dibromomethylbenzene and a polyethylene glycol with sodium hydride or potassium Z-butoxide in toluene solution. Mixtures of the 1 1 and 2 2 (monomer and dimer) products were isolated and some polymer was formed . The reaction was conducted at temperatures from 30—60° and appeared to be complete in a maximum of one hour. The authors noted that the highest yield of 1 1 cyclic product was obtained with disodium tetraethylene glycolate instead of dipotassium hexaethylene gly-colate (see also Chap. 2) . Chloromethylation of 1,3-benzodioxole followed by reaction with disodium tetraethylene glycolate afforded the macrocycle (29% yield) illustrated in Eq. (3.20). [Pg.29]

Transparent polyethylene can be also applied to the protection of window glass against aggressive media, e.g., the effect of hydrogen fluoride on the plants producing superphosphate fertilizers. The use of transparent polyethylene film for window glass makes it possible to cut down on the heat losses due to the lower thermal conductance of polyethylene as compared to glass. [Pg.76]

Figure 1. Temperature variation of the conductivity for a cross-section of polymer electrolytes. PESc, poly (ethylene succinate) PEO, polyethylene oxide) PPO, polypropylene oxide) PEI, poly(ethyleneimine) MEEP, poly(methoxyethoxy-ethoxyphosphazene) aPEO, amorphous methoxy-linked PEO PAN, polyacrylonitrile PC, propylene carbonate EC, ethylene carbonate. Figure 1. Temperature variation of the conductivity for a cross-section of polymer electrolytes. PESc, poly (ethylene succinate) PEO, polyethylene oxide) PPO, polypropylene oxide) PEI, poly(ethyleneimine) MEEP, poly(methoxyethoxy-ethoxyphosphazene) aPEO, amorphous methoxy-linked PEO PAN, polyacrylonitrile PC, propylene carbonate EC, ethylene carbonate.
Acetylene (ethyne), C2H2, can be polymerized, (a) Draw the Lewis structure for acetylene and draw a Lewis structure for the polymer that results when acetylene is polymerized. The polymer has formula (CH), where n is large, (b) Consider the polymers polyacetylene and polyethylene. The latter has the formula (CH2)W and is an insulating material (plastic wrap is made of polyethylene), whereas polyacetylene is a darkly colored material that can conduct electricity when properly treated. On the basis of your answer to part (a), suggest an explanation for the difference in the two polymers. [Pg.256]

Multiblock polyethylene-polydimethylsiloxane copolymers were obtained by the reaction of silane terminated PDMS and hydroxyl terminated polyethylene oligomers in the presence of stannous octoate as the catalyst 254). The reactions were conducted in refluxing xylene for 24 hours. PDMS block size was kept constant at 3,200 g/mole, whereas polyethylene segment molecular weights were varied between 1,200 and 6,500 g/mole. Thermal analysis and dynamic mechanical studies of the copolymers showed the formation of two-phase structures with crystalline polyethylene segments. [Pg.45]

Synthesis of comb (regular graft) copolymers having a PDMS backbone and polyethylene oxide) teeth was reported 344). These copolymers were obtained by the reaction of poly(hydrogen,methyl)siloxane and monohydroxy-terminated polyethylene oxide) in benzene or toluene solution using triethylamine as catalyst. All the polymers obtained were reported to be liquids at room temperature. The copolymers were then thermally crosslinked at 150 °C. Conductivities of the lithium salts of the copolymers and the networks were determined. [Pg.50]

In this contribution, in order to illustrate tlie importance of shake-up bands for extended systems, we simulate and compare on correlated grounds the ionization spectra of polyethylene and poly acetylene, the most simplest systems one can consider to represent insulating or semi-conducting polymers. Conclusions for the infinite stereoregular chains are drawn by exU apolation of the trends observed with the first terms of the related n-alkane or acene series, CnH2n+2 and CnHn+2. respectively, with n=2, 4, 6 and 8. Our simulations are also compared to X-ray photoionization spectra (7) recorded on gas phase samples of ethylene, butadiene and hexatriene, which provide a clear experimental manisfestation of the construction of correlation bands (8-12). [Pg.78]


See other pages where Polyethylene conductivity is mentioned: [Pg.137]    [Pg.248]    [Pg.137]    [Pg.248]    [Pg.476]    [Pg.324]    [Pg.328]    [Pg.552]    [Pg.169]    [Pg.348]    [Pg.554]    [Pg.558]    [Pg.458]    [Pg.39]    [Pg.86]    [Pg.87]    [Pg.43]    [Pg.225]    [Pg.150]    [Pg.42]    [Pg.153]    [Pg.186]    [Pg.602]    [Pg.229]    [Pg.282]    [Pg.392]    [Pg.14]    [Pg.133]    [Pg.647]    [Pg.676]    [Pg.71]    [Pg.451]    [Pg.513]    [Pg.135]    [Pg.111]    [Pg.59]    [Pg.113]    [Pg.253]   
See also in sourсe #XX -- [ Pg.78 , Pg.80 ]

See also in sourсe #XX -- [ Pg.78 , Pg.80 ]




SEARCH



Conducting polymer polyethylene oxide

Conducting polymers polyethylene

Conductivity, electronic polyethylene

High-density polyethylene thermal conductivity

Polyethylene electrical conductivity

Polyethylene electrically conducting

Polyethylene oxide ionic conductivity

Polyethylene oxide) conductivity

Polyethylene thermal conductivity

Polyethylene-Based Conducting Polymer Blends and Composites

© 2024 chempedia.info