Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polyene structures spectroscopy

The estimation of the concentration of polyenes from their absorption spectra requires prior empirical calculation of the absorption coefficients [512]. A very sensitive method for the registration of polyene structures in degraded poly(vinyl chloride) is second derivative spectroscopy (cf. section 10.16) [1792, 1888]. [Pg.156]

Second derivative spectroscopy also allows the determination of very low concentrations of polyene structures so formed (Fig. 10.61). [Pg.503]

Ultraviolet/visible absorption, fluorescence, infrared and Raman spectroscopies are useful for studying structures (configuration, conformation, symmetry etc.) of electronically ground and excited states of linear polyenes, which have attracted much attention of... [Pg.149]

Resonance Raman spectroscopy has been applied to studies of polyenes for the following reasons. The Raman spectrum of a sample can be obtained even at a dilute concentration by the enhancement of scattering intensity, when the excitation laser wavelength is within an electronic absorption band of the sample. Raman spectra can give information about the location of dipole forbidden transitions, vibronic activity and structures of electronically excited states. A brief summary of vibronic theory of resonance Raman scattering is described here. [Pg.152]

It should be mentioned that the present review does not cover in detail the ground-state electronic and/or molecular structure of diene and polyene radical cations as revealed, for example, by electron spin resonance (ESR) spectroscopy or variants thereof. [Pg.175]

For many years, investigations on the electronic structure of organic radical cations in general, and of polyenes in particular, were dominated by PE spectroscopy which represented by far the most copious source of data on this subject. Consequently, attention was focussed mainly on those excited states of radical ions which can be formed by direct photoionization. However, promotion of electrons into virtual MOs of radical cations is also possible, but as the corresponding excited states cannot be attained by a one-photon process from the neutral molecule they do not manifest themselves in PE spectra. On the other hand, they can be reached by electronic excitation of the radical cations, provided that the corresponding transitions are allowed by electric-dipole selection rules. As will be shown in Section III.C, the description of such states requires an extension of the simple models used in Section n, but before going into this, we would like to discuss them in a qualitative way and give a brief account of experimental techniques used to study them. [Pg.228]

Very powerful tools for the study of dienes and, to some extent, polyenes (in particular annular polyenes) are both H and 13 C NMR spectroscopies, which will be discussed in a separate section. As previously mentioned 1,3-butadiene is more stable in the s-trans conformation and in the H NMR spectrum both butadiene (1) and 2,3,6,7-tetramethyl-2,4,6-octatriene (3) display the vinyl proton at a low chemical shift value. In these simple examples the S value can be predicted theoretically. The 111 NMR spectrum of a C25-branched isoprenoid was examined as part of the structural determination for biomarkers and is shown in Figure l6. The other spectral and structure assignments are described later in this review. [Pg.483]

Sowinski and coworkers40 reported a structure of vacidin A (63), an aromatic hep-taene macrolide antibiotic. The constitution of vacidin A, a representative of the aromatic heptaene macrolide antibiotics, was established on the basis of 13C and H- H double quantum filtered correlated spectroscopy, rotating frame nuclear Overhauser effect spectroscopy, 7-resolved 11 as well as H-13C correlation NMR spectra. The geometry of the polyene chromophore was determined as 22E, 24E, 26E, 28Z, 30Z, 32E, 34E. [Pg.94]

The reader may gain better appreciation of the many basic differences responsible for the division into different classes of heteronin by comparing certain representative members, directly or through appropriate models, in terms of the information presented in Table II. First, one notes that the classification of oxonin (24a) as atropic, jV-methylazonine (27a) as nondescript, and 1 //-azonine or its anion as diatropic, originally proposed on the basis of NMR chemical shifts (data shown in first three rows), was confirmed by the determination of solvent shift character (S values)38 39 that revealed 1//-azonine to possess significant diatropic influence (comparable to that of naphthalene +1.3538), the V-methyl counterpart to exhibit a far weaker effect in the same direction, and oxonin to be atropic or mildly paratropic under this criterion, its S value being closely similar to that of the family s 8 --electron polyenic model, all-cis-cyclononatetraene (24 X = CH2). Major differences between oxonin and parent azonine are also seen to exist in terms of thermal stability and 13C NMR and UV spectroscopy, all of which serve further to emphasize the close structural similarity of oxonin with n-... [Pg.68]

The principal merit of u.v -visible spectroscopy is in the assessment of the degree of conjugation (not readily deduced from the previous methods) in polyenes, polyenynes, and polyenones, and in the recognition of the presence of aromatic structures. [Pg.1211]

Vibration spectroscopy is also able to measure the concentration of ion radicals (by estimation of the band intensities). Moreover, the IR intensities of some bands in the fingerprint region for organic ion radicals may be much larger than the intensities of the bands for the neutral parent molecules. The examples are polycyclic aromatic hydrocarbons or linear polyenes and their ion radicals. The vibration patterns of the intensity-carrying modes are closely related to the electronic structure of the ion radicals (Torii et al. 1999 and references therein). [Pg.236]

Pristine SWCNTs and their fluorinated derivatives, F-SWCNTs, were reacted with organic peroxides to functionalize their sidewalls covalently by attachment of free radicals (Scheme 1.15). The tubes reactivity towards radical addition was compared with that of corresponding polyaromatic and conjugated polyene JT-systems [150, 151]. The characterization of the functionalized SWCNTs and F-SWCNTs was performed by Raman, FT-IR and UV/Vis/NIR spectroscopy and also by TGA/MS, TGA/FT-IR and with TEM measurements. The solution-phase UV/Vis/NIR spectra showed complete loss of the van Hove absorption band structure, typical of functionalized SWCNTs [150]. [Pg.20]

Perhaps the best known clinical agent is the heptaene polyene, amphotericin B 50, isolated from Streptomyces nodosus and first reported in 1956. The full structure was not elucidated until 1970 when it was determined by X-ray crystallography,56 closely followed by a description of the absolute configuration determined by utilising the iodo-derivative for X-ray and by mass spectroscopy.57 Quite recently, 50 years after its initial discovery, a full review giving the highlights of the chemistry around the compound was published by Cereghetti and Carreira.58... [Pg.18]


See other pages where Polyene structures spectroscopy is mentioned: [Pg.984]    [Pg.260]    [Pg.13]    [Pg.367]    [Pg.9]    [Pg.25]    [Pg.44]    [Pg.156]    [Pg.468]    [Pg.150]    [Pg.151]    [Pg.338]    [Pg.60]    [Pg.67]    [Pg.175]    [Pg.47]    [Pg.9]    [Pg.688]    [Pg.175]    [Pg.406]    [Pg.9]    [Pg.18]    [Pg.359]    [Pg.468]    [Pg.96]    [Pg.6074]    [Pg.45]    [Pg.150]    [Pg.151]    [Pg.338]   


SEARCH



Polyene structure

Spectroscopy polyenes

Spectroscopy structure)

© 2024 chempedia.info