Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Poly resonance assignments

Inomata 211) studied the H-NMR spectra of poly(penta-1,3-diene) and concluded that with hexane as polymerization medium the polymers were about 49% cis-1,4 and 40% trans-1,4 enchained. The polymer derived from the cis monomer had 12% of 1,2-units which were exclusively trans that from the trans monomer had some 10 % of 1,2-units, two thirds of which were trans. Aubert et al.2I6) made a more extensive study of pentadiene polymers using both1H and 13C-NMR spectroscopy and modified the cis and trans-1,4 methyl resonance assignments made by Inomata 2U). [Pg.55]

The T resonances in the 73-74 ppm region have multiple-bond correlations in the HSQC-TOCSY spectmm to proton resonances of S and/or S , methylenes. Therefore, they are attributed to Xm groups such as those found in stmcture 20. Analysis of these data provided resonance assignments for all the S and T type carbons for the stmctures in Scheme 1. Detailed analysis of expansions of the peak-containing regions of the 2D-NMR data provided complete resonance assignments for all monomer sequences up to the tetrad level in poly(EV). [Pg.137]

The proton decoupled carbon 13 NMR spectra for three poly( cyclohexylmethyl-co-isopropylmethyl) copolymers are shown in Figure 4. The backbone methyl group is observed as occurring between -4 and -1 ppm and consists of multiple resonances which are due to polymer microstructure. Multiple resonances are also observed for the methyl and tertiary carbon of the isopropyl group and for the methine carbon of the cyclohexyl group. Microstruc-tural assignments for these resonances remain to be made. It has also been found that increasing the bulky character of the substituent yielded broader resonance peaks in the carbon-13 NMR spectra. [Pg.117]

The H- and C-NMR spectroscopic data support the proposed primary structure of poly(Lys-25). The amide carbonyl resonances are particularly informative as these signals are well resolved in the C-NMR spectrum of poly(Lys-25) (Figure 4). An amide carbonyl resonance is observed at 174.9 ppm for poly(Lys-25) that does not appear in the spectrum of poly(Val-Pro-Gly-Val-Gly) [13]. The position and relative intensity of this resonance are consistent with a lysine amide carbonyl group within a peptide bond [14]. Moreover, the resonances of the amide carbonyl groups for other residues in the pentapeptide repeat are split due to the substitution of a lysine residue at position 4 in every fifth pentapeptide in Lys-25. In addition, the absence of splitting in amide carbonyl group of valine in position 4 (174.5 ppm) supports this assignment, as this residue is replaced by lysine in the fifth pentapeptide of the Lys-25 repeat. The presence of other resonances attributable to the lysine residue can be detected in the H- and C-NMR spectra of the Lys-25 polymer at levels commensurate with its... [Pg.127]

Excited state resonance Raman spectra of CuTMPyP bound to DNA or poly[d(A-T)] have been recorded [167,168], These are assigned to an exciplex formed between the porphyrin and the A-T sites of the polynucleotide. The excited state lifetime is estimated to be ca. 20 ps. Weak emission from CuTMPyP" bound to DNA has been reported and has been assigned to originate in a tripdoublet or tripquartet level [169]. It is believed that the emissive complexes are intercalated, whereas groove-bound CuTMPyP does not emit because of solvent quenching of the excited state. [Pg.66]


See other pages where Poly resonance assignments is mentioned: [Pg.222]    [Pg.191]    [Pg.152]    [Pg.368]    [Pg.176]    [Pg.137]    [Pg.377]    [Pg.580]    [Pg.295]    [Pg.198]    [Pg.242]    [Pg.46]    [Pg.217]    [Pg.284]    [Pg.304]    [Pg.336]    [Pg.137]    [Pg.146]    [Pg.175]    [Pg.131]    [Pg.59]    [Pg.75]    [Pg.35]    [Pg.91]    [Pg.491]    [Pg.126]    [Pg.145]    [Pg.299]    [Pg.48]    [Pg.71]    [Pg.75]    [Pg.55]    [Pg.88]    [Pg.412]    [Pg.48]    [Pg.254]    [Pg.261]    [Pg.190]    [Pg.207]    [Pg.222]    [Pg.187]    [Pg.247]   
See also in sourсe #XX -- [ Pg.222 , Pg.223 , Pg.224 , Pg.225 ]




SEARCH



Assigning resonances

Assignment poly

Poly resonances

Resonance assignment

© 2024 chempedia.info