Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Photochemical reactions triplet state

The solvent effects observed in the photochemical rearrangements of cross-conjugated dienones suggest that the availability of a proton to an excited state of the ketone may be an important controlling factor. It is interesting to consider the possibility that protonation of an excited state may lie behind the apparent polar reactions. Triplet states are likely to be more polarizable and to be stronger bases than the corresponding... [Pg.343]

Once the excited molecule reaches the S state it can decay by emitting fluorescence or it can undergo a fiirtlier radiationless transition to a triplet state. A radiationless transition between states of different multiplicity is called intersystem crossing. This is a spin-forbidden process. It is not as fast as internal conversion and often has a rate comparable to the radiative rate, so some S molecules fluoresce and otliers produce triplet states. There may also be fiirther internal conversion from to the ground state, though it is not easy to detemiine the extent to which that occurs. Photochemical reactions or energy transfer may also occur from S. ... [Pg.1143]

Peroxyoxalate chemistry has been used to carry out photochemical reactions but does not appear to produce triplet excited states (91). [Pg.268]

Either the singlet or the triplet state may be involved in a photochemical reaction, whereas only singlet species are involved in most thermal processes. This permits the formation of intermediates that are unavailable under thermal conditions. [Pg.747]

Is the reaction concerted As was emphasized in Chapter 11, orbital symmetry considerations apply only to concerted reactions. The possible involvement of triplet excited states and, as a result, a nonconcerted process is much more common in photochemical reactions than in the thermal processes. A concerted mechanism must be established before the orbital symmetry rules can be applied. [Pg.752]

In the photochemical isomerization of isoxazoles, we have evidence for the presence of the azirine as the intermediate of this reaction. The azirine is stable and it is the actual first photoproduct of the reaction, as in the reaction of r-butylfuran derivatives. The fact that it is able to interconvert both photochemically and thermally into the oxazole could be an accident. In the case of 3,5-diphenylisoxazole, the cleavage of the O—N bond should be nearly concerted with N—C4 bond formation (8IBCJ1293) nevertheless, the formation of the biradical intermediate cannot be excluded. The results of calculations are in agreement with the formation of the azirine [9911(50)1115]. The excited singlet state can convert into a Dewar isomer or into the triplet state. The conversion into the triplet state is favored, allowing the formation of the biradical intermediate. The same results [99H(50)1115] were obtained using as substrate 3-phenyl-5-methylisoxazole (68ACR353) and... [Pg.59]

Theoretical calculations explain the photochemical behavior of phenylthiazoles (Fig. 14) (99MI233). The RCRE mechanism cannot be invoked because the radical intermediates have higher energies than the corresponding triplet states. Furthermore, the formation of the Dewar isomer is favored in comparison with the formation of the zwitterionic intermediate. Nevertheless, the reaction conditions used by Kojima and Maeda could allow for an endothermic reaction giving this type of intermediate. The same results were obtained using 2,5-diphenylthiazole. [Pg.71]

Oxepin has also been converted photochemically to phenol in 74% yield. This reaction occurs under irradiation conditions by which benzene oxide is excited to a triplet state, e.g. by irradiation in acetone as solvent.207 A rare example for a nucleophilic catalysis of the aromatization of an oxepin/benzene oxide to a phenol has been reported for /err-butyl oxepin-4-carboxylate which undergoes a rearrangement reaction in the presence of trimethylamine to give a mixture of /m-butyl 3-hydroxybenzoate (94%) and 4-hydroxybenzoate (6%).243... [Pg.56]

Ordinary aldehydes and ketones can add to alkenes, under the influence of UV light, to give oxetanes. Quinones also react to give spirocyclic oxetanes. This reaction, called the Patemo-BUchi reaction,is similar to the photochemical dimerization of alkenes discussed at 15-61.In general, the mechanism consists of the addition of an excited state of the carbonyl compound to the ground state of the alkene. Both singlet (5i) and n,n triplet states have been shown to add to... [Pg.1249]

Stability of diradicals is important for photochemical reactions. Spin multiplicity of the ground states is critical for the molecular magnetic materials. The relative stability of singlet (triplet) isomers and the spin multiplicity of the ground states (spin preference) [48] has been described to introduce the orbital phase theory in Sects. 2.1.5 and 2.1.6. Applications for the design of diradicals are reviewed by Ma and Inagaki elsewhere in this volume. Here, we briefly summarize the applications. [Pg.109]

Magnetic field effects on the reaction kinetics or yields of photochemical reactions in the condensed phase have been studied [20-23]. They have proved powerful for verifying the mechanism of photochemical reactions including triplet states. Previously, we obtained photogenerated triplet biradicals of donor-acceptor linked compounds, and found that the lifetimes of the biradicals were remarkably extended in the presence of magnetic fields up to 1T [24]. It has been reported that Cgo and its derivatives form optically transparent microscopic clusters in mixed solvents [25,26]. The clustering behavior of fullerene (C o) is mainly associated with the strong three-dimensional hydrophobic interactions between the C o units. Photoinduced... [Pg.259]

That the high degree of torsional and other types of strain inherent in the triplet states or trans conformers of cyclohexene and cycloheptene may be responsible for their photochemical behavior is suggested by the reactions of compound (50), a moderately twisted olefin according to molecular models. Compound (50) quantitatively yields bicyclo[3.3.1]non-l-yl acetate (51) within 15 sec after being dissolved in glacial acetic acid(83> ... [Pg.268]

PHOTOCHEMICAL KINETICS CONCENTRATIONS, RATES, YIELDS, AND QUANTUM YIELDS For a molecule A undergoing light absorption and reaction in its lowest excited singlet state to form a product P, we can write the following hypothetical mechanism, where A and Af are the lowest excited singlet and triplet states, respectively ... [Pg.311]

In Chapter 3 we discussed two photochemical reactions characteristic of simple carbonyl compounds, namely type II cleavage and photoreduction. We saw that photoreduction appears to arise only from carbonyl triplet states, whereas type II cleavage often arises from both the excited singlet and triplet states. Each process was found to occur from discrete biradical intermediates. In this chapter we will discuss two other reactions observed in the photochemistry of carbonyls, type I cleavage and oxetane formation. [Pg.374]

A carbonyl chromophore in a macromolecule can participate in a variety of photochemical processes that can have as end result the degradation of the polymer via processes like the Norrish Type I or Type II reaction, the triggering of a chain reaction leading to peroxidation, the transfer of energy to another chromophore or, it can also behave as an energy sink if a suitable, non-degradative path, is available to the triplet state. [Pg.19]


See other pages where Photochemical reactions triplet state is mentioned: [Pg.218]    [Pg.733]    [Pg.1596]    [Pg.2948]    [Pg.329]    [Pg.262]    [Pg.300]    [Pg.140]    [Pg.745]    [Pg.614]    [Pg.749]    [Pg.1070]    [Pg.265]    [Pg.250]    [Pg.103]    [Pg.104]    [Pg.105]    [Pg.317]    [Pg.317]    [Pg.1250]    [Pg.4]    [Pg.275]    [Pg.749]    [Pg.1070]    [Pg.307]    [Pg.310]    [Pg.73]    [Pg.73]    [Pg.341]    [Pg.361]    [Pg.422]    [Pg.540]    [Pg.239]    [Pg.607]   
See also in sourсe #XX -- [ Pg.213 ]

See also in sourсe #XX -- [ Pg.213 ]




SEARCH



Photochemical reactions triplet excited states

Triplet state

Triplet state, in photochemical reactions

© 2024 chempedia.info