Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Postcolumn photochemical reactions compounds

Postcolumn photochemical reactions are another approach to the detection problem. High-intensity UV light, generally provided by a Hg or Zn lamp, photolyzes the HPLC effluent, which passes through a Teflon (47) or quartz tube. The photolysis reaction determines the nature of the subsequent detection. If the compound has a UV chromophore, such as an aromatic ring, and an ionizable heteroatom, such as chlorine, then the products of the reaction can be detected conductometrically. Busch et al. (48) have examined more than 40 environmental pollutants for applicability to detection with photolysis and conductance detection. Haeberer and Scott (49) found the photoconductivity approach superior to precolumn derivatization for the determination of nitrosoamines in water and waste water. The primary limitation of this detection approach results from the inability to use mobile phases that contain ionic modifiers, that is, buffers and... [Pg.133]

Figure 27.18 Common configuration for postcolumn reactors with electrochemical analysis. (A) LC-chemical reaction-EC. Postcolumn addition of a chemical reagent (for example, Cu2+ or an enzyme). (B) LC-enzyme-LC. Electrochemical detection following postcolumn reaction with an immobilized enzyme or other catalyst (for example, dehydrogenase or choline esterase). (C) LC-EC-EC. Electrochemical generation of a derivatizing reagent. The response at the second electrode is proportional to analyte concentration (for example, production of Br2 for detection of thioethers). (D) LC-EC-EC. Electrochemical derivatization of an analyte. In this case a compound of a more favorable redox potential is produced and detected at the second electrode (for example, detection of reduced disulfides by the catalytic oxidation of Hg). (E) LC-hv-EC. Photochemical reaction of an analyte to produce a species that is electrochemically active (for example, detection of nitro compounds and phenylalanine). Various combinations of these five arrangements have also been used. [Reprinted with permission from Bioanalytical Systems, Inc.]... Figure 27.18 Common configuration for postcolumn reactors with electrochemical analysis. (A) LC-chemical reaction-EC. Postcolumn addition of a chemical reagent (for example, Cu2+ or an enzyme). (B) LC-enzyme-LC. Electrochemical detection following postcolumn reaction with an immobilized enzyme or other catalyst (for example, dehydrogenase or choline esterase). (C) LC-EC-EC. Electrochemical generation of a derivatizing reagent. The response at the second electrode is proportional to analyte concentration (for example, production of Br2 for detection of thioethers). (D) LC-EC-EC. Electrochemical derivatization of an analyte. In this case a compound of a more favorable redox potential is produced and detected at the second electrode (for example, detection of reduced disulfides by the catalytic oxidation of Hg). (E) LC-hv-EC. Photochemical reaction of an analyte to produce a species that is electrochemically active (for example, detection of nitro compounds and phenylalanine). Various combinations of these five arrangements have also been used. [Reprinted with permission from Bioanalytical Systems, Inc.]...
Applicability of the conductivity detector can be extended by chemical derivatization or by the use of postcolumn photochemical reactions [78]. The use of a photochemical reaction detector, also known as a photoconductivity detector, can also be very selective. Only certain organic compounds such as trinitroglycerin, chloramphenicol, and hydrochlorothiazide will undergo photolytic decomposition to produce ionic species. [Pg.77]


See other pages where Postcolumn photochemical reactions compounds is mentioned: [Pg.159]    [Pg.134]    [Pg.159]    [Pg.1410]    [Pg.233]    [Pg.702]    [Pg.130]   
See also in sourсe #XX -- [ Pg.126 , Pg.127 ]




SEARCH



Photochemical reactions, postcolumn

Postcolumn

Postcolumn reaction

© 2024 chempedia.info