Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Phosphoenolpyruvate synthetase, mechanism

The problem of focusing phosphorylation free energy is elegantly solved in the mechanisms of action of phosphoenolpyruvate synthetase and pyruvate phosphate dikinase. Phosphohistidyl residues are generated at the active sites of these enzymes by pyrophosphorylation of active site histidines, followed by hydrolysis... [Pg.179]

Available evidence (14,15) favors the pathway for pyruvate kinase by way of phosphorylation of pyruvate enol. Furthermore, J. Knowles and his coworkers (16,17), using chiral thiophosphates and chiral (160,170,180) phosphate have shown that pyruvate kinase transfers phosphate from phosphoenolpyruvate to ADP with stereochemical inversion at phosphorus. Since monomeric metaphosphate is presumably planar, a chemical reaction by way of that ion should proceed with racemization. In the active site of an enzyme, however, all components might be held so rigidly that racemization need not occur. Furthermore, no information is yet available on the detailed mechanism of reactions catalyzed by cytidine synthetase our own experiments, designed to distinguish among the mechanisms here discussed, are as yet incomplete. [Pg.67]

Comprehensive Biological Catalysis—a Mechanistic Reference Volume has recently been published. The fiiU contents list (approximate number of references in parentheses) is as follows S-adenosylmethionine-dependent methyltransferases (110) prenyl transfer and the enzymes of terpenoid and steroid biosynthesis (330) glycosyl transfer (800) mechanism of folate-requiring enzymes in one-carbon metabohsm (260) hydride and alkyl group shifts in the reactions of aldehydes and ketones (150) phosphoenolpyruvate as an electrophile carboxyvinyl transfer reactions (140) physical organic chemistry of acyl transfer reactions (220) catalytic mechanisms of the aspartic proteinases (90) the serine proteinases (135) cysteine proteinases (350) zinc proteinases (200) esterases and lipases (160) reactions of carbon at the carbon dioxide level of oxidation (390) transfer of the POj group (230) phosphate diesterases and triesterases (160) ribozymes (70) catalysis of tRNA aminoacylation by class I and class II aminoacyl-tRNA synthetases (220) thio-disulfide exchange of divalent sulfirr (150) and sulfotransferases (50). [Pg.72]

The mechanism of the condensation of phosphoenolpyruvate (8) and D-erythrose-4-phosphate (7), the DAHP synthetase reaction. [Pg.12]


See other pages where Phosphoenolpyruvate synthetase, mechanism is mentioned: [Pg.179]    [Pg.233]    [Pg.568]    [Pg.72]    [Pg.72]    [Pg.399]    [Pg.399]    [Pg.13]    [Pg.18]    [Pg.355]   


SEARCH



Phosphoenolpyruvate

Phosphoenolpyruvate synthetase

© 2024 chempedia.info