Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Phosphines enantioselective hydrogenation catalysts

The fundamental concepts of enantioselective hydrogenation were introduced in Section 2.5.1 of Part A, and examples of reactions of acrylic acids and the important case of a-acetamido acrylate esters were discussed. The chirality of enantioselective hydrogenation catalysts is usually derived from phosphine ligands. A number of chiral phosphines have been explored in the development of enantioselective hydrogenation catalysts,21 and it has been found that some of the most successful catalysts are derived from chiral 1, l -binaphthyldiphosphines, such as BINAP.22... [Pg.376]

A number of chiral ligands, especially phosphines, have been explored in order to develop enantioselective hydrogenation catalysts.9 Some of the most successful catalysts... [Pg.253]

The Rh-NHC complexes, with or without phosphine co-ligands, have been stndied as hydrogenation catalysts of alkenes with molecular hydrogen, with the aim to develop more active, selective (and/or enantioselective) and thermally stable catalysts. [Pg.24]

Tocopherol can be produced as the pure 2R,4 R,8 R stereoisomer from natural vegetable oils. This is the most biologically active of the stereoisomers. The correct side-chain stereochemistry can be obtained using a process that involves two successive enantioselective hydrogenations.28 The optimum catalyst contains a 6, 6 -dimethoxybiphenyl phosphine ligand. This reaction has not yet been applied to the enantioselective synthesis of a-tocopherol because the cyclization step with the phenol is not enantiospecific. [Pg.379]

Togni and co-workers have used the convergent methodology to link phosphine-containing chiral ferrocene ligands on the cyclophosphazene core to obtain dendrimeric structures of the type 37 (Fig. 21) (201). The reaction with the cyclophosphazene end occurs by the replacement of the P-Cl bond and by the formation of the P-0 bond. The dendrimers contain twelve and sixteen ferrocene moieties respectively. The phosphine units present can coordinate to Rh(I) to afford metallic dendrimers, which have been shown to be excellent catalysts for the enantioselective hydrogenation of dimethyl itaconate. The product... [Pg.195]

Another important use for Wilkinson s catalyst is in the production of materials that are optically active (by what is known as enantioselective hydrogenation). When the phosphine ligand is a chiral molecule and the alkene is one that can complex to the metal to form a structure that has R or S chirality, the two possible complexes will represent two different energy states. One will be more reactive than the other, so hydrogenation will lead to a product that contains predominantly only one of the diastereomers. [Pg.795]

Following Wilkinson s discovery of [RhCl(PPh3)3] as an homogeneous hydrogenation catalyst for unhindered alkenes [14b, 35], and the development of methods to prepare chiral phosphines by Mislow [36] and Horner [37], Knowles [38] and Horner [15, 39] each showed that, with the use of optically active tertiary phosphines as ligands in complexes of rhodium, the enantioselective asymmetric hydrogenation of prochiral C=C double bonds is possible (Scheme 1.8). [Pg.18]

Before 1968, attempts to perform enantioselective hydrogenations had either used a chiral auxiliary attached to the substrate [1] or a heterogeneous catalyst that was on a chiral support, usually derived from Nature [2]. Since the disclosure of chiral phosphine ligands to bring about enantioselective induction in a hydrogenation, many systems have been developed, as evidenced in this book. The evolution of these transition-metal catalysts has been discussed in a number of reviews [3-12]. [Pg.745]

In 1968, Knowles et al. [1] and Horner et al. [2] independently reported the use of a chiral, enantiomerically enriched, monodentate phosphine ligand in the rhodium-catalyzed homogeneous hydrogenation of a prochiral alkene (Scheme 28.1). Although enantioselectivities were low, this demonstrated the transformation of Wilkinson s catalyst, Rh(PPh3)3Cl [3] into an enantioselective homogeneous hydrogenation catalyst [4]. [Pg.995]

When the peptide synthesis was complete, the phosphines were deprotected by sequential treatment with MeOTf and HMPT (Scheme 36.9). Addition of the rhodium precursor then created the catalyst library, which was screened, on the pin in the enantioselective hydrogenation of methyl-2-acetamidoacrylate (see Scheme 36.10). Unfortunately, this beautiful concept was poorly rewarded with rather low enantioselectivities. [Pg.1258]

The polymer-supported chiral phosphine obtained (Fig. 42.15) was treated with an Rh precursor and used for the enantioselective hydrogenation of dehydroamino acid derivatives. The obtained catalyst gave up to 82% ee, albeit with still low activity. Stille has developed this immobilization technique further by even more careful tuning of the polarity of the support with that of the reaction medium. For example, he introduced DIOP to a monomer vinylbenzalde-hyde in reactions analogous to those shown for the polymer in Figure 42.11. [Pg.1448]

The asymmetric synthesis of allenes via enantioselective hydrogenation of ketones with ruthenium(II) catalyst was reported by Malacria and co-workers (Scheme 4.11) [15, 16]. The ketone 46 was hydrogenated in the presence of iPrOH, KOH and 5 mol% of a chiral ruthenium catalyst, prepared from [(p-cymene) RuC12]2 and (S,S)-TsDPEN (2 equiv./Ru), to afford 47 in 75% yield with 95% ee. The alcohol 47 was converted into the corresponding chiral allene 48 (>95% ee) by the reaction of the corresponding mesylate with MeCu(CN)MgBr. A phosphine oxide derivative of the allenediyne 48 was proved to be a substrate for a cobalt-mediated [2 + 2+ 2] cycloaddition. [Pg.147]


See other pages where Phosphines enantioselective hydrogenation catalysts is mentioned: [Pg.264]    [Pg.171]    [Pg.345]    [Pg.1003]    [Pg.246]    [Pg.27]    [Pg.384]    [Pg.10]    [Pg.54]    [Pg.800]    [Pg.814]    [Pg.987]    [Pg.1073]    [Pg.1099]    [Pg.1105]    [Pg.1105]    [Pg.1116]    [Pg.1137]    [Pg.1251]    [Pg.1251]    [Pg.1253]    [Pg.1267]    [Pg.1271]    [Pg.1279]    [Pg.1338]    [Pg.1458]    [Pg.1611]    [Pg.332]    [Pg.16]    [Pg.116]    [Pg.74]    [Pg.501]    [Pg.108]    [Pg.167]    [Pg.26]    [Pg.79]   


SEARCH



Enantioselective catalysts

Enantioselective hydrogenation catalyst

Enantioselectivity catalysts

Enantioselectivity hydrogenation

Hydrogen enantioselective

Hydrogen enantioselectivity

Hydrogenation enantioselective

Phosphine catalysts hydrogenation

Phosphine hydrogenation

Phosphines enantioselective hydrogenation

Phosphines enantioselectivity

© 2024 chempedia.info