Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Phenols, Claisen rearrangement

You have already seen that a carbon-heteroatom bond is easy to make, since we used such bonds as natural places for disconnections (frames 234 ft). It is good strategy therefore to make a carbon-heteroatom bond and then to transform it into a carbon-earbon bond. The Claisen rearrangement is one way to do this an ortho allyl phenol (B) made from an allyl ether (A) ... [Pg.104]

Q The mechanism of the Claisen rearrangement of other allylic ethers of phenol is analogous to that of allyl phenyl ether What is the product of the Claisen rearrangement of C6H50CH2CH CHCH3 /... [Pg.1011]

Claisen rearrangement (Section 24 13) Thermal conversion of an allyl phenyl ether to an o allyl phenol The rearrange ment proceeds via a cyclohexadienone intermediate... [Pg.1279]

AHyl phenyl ethers rearrange cleanly at high temperatures, producing o-aHyl phenols or -aHylphenols if both ortho positions are blocked. This reaction is called the Claisen rearrangement (10). [Pg.425]

Allyl ethers of perfluoroaromatic phenols have been observed to alkylate the aromatic nucleus [106] or to undergo Claisen rearrangement [1071 (equation 54). [Pg.519]

If both ortho positions bear substituents other than hydrogen, the allyl group will further migrate to the para position. This reaction is called the para-Claisen rearrangement. The formation of the para-substituted phenol can be explained by an initial Claisen rearrangement to an ortho-2l y intermediate which cannot tautomerize to an aromatic o-allylphenol, followed by a Cope rearrangement to the p-allyl intermediate which can tautomerize to the p-allylphenol e.g. 6 ... [Pg.59]

The discovery of the utility of the bis-chromone carboxylic acid derivative cromolyn sodium in the treatment of asthma and related allergies has led to an intensive, and thus far not very fruitful, effort to discover analogues which would show oral activity in contrast to the lead which must be administered by inhalation. Preparation of a typical analogue, proxicromil (63), starts with the O-allylated phenol 57. Claisen rearrangement leads to the corresponding C-allylated product 58. [Pg.205]

Unlike the acid-catalyzed ether cleavage reaction discussed in the previous section, which is general to all ethers, the Claisen rearrangement is specific to allyl aryl ethers, Ar—O—CH2CH = CH2. Treatment of a phenoxide ion with 3-bromopropene (allyl bromide) results in a Williamson ether synthesis and formation of an allyl aryl ether. Heating the allyl aryl ether to 200 to 250 °C then effects Claisen rearrangement, leading to an o-allylphenol. The net result is alkylation of the phenol in an ortho position. [Pg.659]

For example /-butyl phenyl ether with aluminium chloride forms para-t-butyl phenol155. Often the de-alkylated phenol is also formed in considerable quantity. The reaction formally resembles the Fries and Claisen rearrangements. Like the Fries rearrangement the question of inter- or intramolecularity has not been settled, although may experiments based on cross-over studies156, the use of optically active ethers157 and comparison with product distribution from Friedel-Crafts alkylation of phenols158 have been carried out with this purpose in view. [Pg.476]

A simple synthesis of fluorenes as 4-297 was developed by Schafer and coworkers, also using a combination of a Claisen rearrangement and a carbonyl ene reaction (Scheme 4.63) [100]. Heating 4-295 in xylene at 180 °C led to 4-297 as a single diastereomer in 73 % yield the phenol 4-296 can be assumed as an intermediate, but this could not be detected in the reaction mixture. [Pg.323]

Allyl phenyl ether was heated with water in the MBR for 1 h at different temperatures [46]. It underwent Claisen rearrangement to 2-allylphenol (56% yield) at 200 °C, 2-(2-hydroxyprop-l-yl)phenol (37% yield) at 230 °C and 2-methyl-2,3-dihydro-furan (72% yield) at 250 °C (Scheme 2.12). Support for the reaction sequence was obtained through experiments with authentic intermediates. [Pg.50]

The formation of phenolic polymers by Claisen Rearrangement of poly(4-allyloxystyrenes) under acid catalyzed thermolysis conditions has previously been reported in connection with the development high resolution photoresists (14,15). This work was primarily focused on the production of soluble phenolic polymers that could be imaged on the basis of differential dissolution. In this regard, allyloxysty-rene polymers bearing alkyl substituents at the a-position to the ether oxygen atom... [Pg.112]

Important advances in propargylic etherification have come from the use of copper-based systems that achieve efficient, catalytic O-progargylation of phenols (Scheme 8).245,246 While the mechanism of this transformation remains unclear, the products of these reactions have been readily converted into chromenes through subsequent Claisen rearrangement,... [Pg.666]

Some allyl phenyl ethers with an alkyl substituent on the end carbon of the allyl group rearrange to give the normal ortho-Claisen product together with another isomeric O-allyl phenol. The latter, formed by the rearrangement of the normal product, has been established. This is called abnormal Claisen rearrangement, is illustrated by the following example. [Pg.91]

Another abnormal Claisen rearrangement is the product formed on heating phenyl propargyl ether. The normal product O-allenyl phenol rearranges by a [1, 5] hydrogen shift and then there is an electrocylic ring closure to give chromene which is the observed product. [Pg.91]

When, furthermore, phenols (368) are coupled with 1 in the presence of a Pd° catalyst, the phenoxy-methyl-1,3-dienes 369 are produced [158]. As aryl allyl ethers, these can be made to undergo a Claisen rearrangement (205 °C, DMF) and the ensuing 2-(l,3-dienylmethyl)phenols 370 finally cydize in the presence of a trace of acid to a mixture of exo-methylene chromans 371 (major product) and dihydrobenzofur-ans 372 - a remarkable generation of functional and structural complexity from simple starting materials with 100% atom economy and underlining impressively the synthetic versatility of modern allene chemistry ... [Pg.234]

The cycloaddition of picryl azide with phenoxyallene took place at the C1-C2 double bond of the allene exclusively to give the triazoline intermediate 97 [89]. This intermediate underwent a facile Claisen rearrangement to yield cyclohexadienone 98, which rapidly tautomerized to phenol 99. [Pg.759]

The low structural specificity of the antihistamines has already been noted. It is perhaps not too surprising, therefore, to find Lhat attachment of the basic side chain directly onto one of the. iromatic rings affords active compounds. In an unusual reaction reminiscent of the Claisen rearrangement, benzyl chloride affords the substituted phenol, 46, on heating with phenol itself. Alkyl-.ition of 46 with 2-dimethylaminoethyl chloride gives phenyltolox-.imine (47).Alkylation of that same intermediate (46) with 1-bromo-2-chloropropane, leads to 48. Use of that halide to alkyl-,ite piperidine gives the antihistamine, pirexyl (49). ... [Pg.134]


See other pages where Phenols, Claisen rearrangement is mentioned: [Pg.520]    [Pg.520]    [Pg.93]    [Pg.632]    [Pg.1011]    [Pg.115]    [Pg.334]    [Pg.194]    [Pg.501]    [Pg.564]    [Pg.802]    [Pg.65]    [Pg.107]    [Pg.112]    [Pg.114]    [Pg.114]    [Pg.114]    [Pg.100]    [Pg.155]    [Pg.161]    [Pg.114]    [Pg.740]    [Pg.150]    [Pg.121]    [Pg.513]    [Pg.353]   
See also in sourсe #XX -- [ Pg.441 ]




SEARCH



Phenol formation of, in Claisen rearrangement

Phenols rearrangement

© 2024 chempedia.info