Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Phase space, definition

The phase space trajectory r (Z), p (Z) is uniquely determined by the initial conditions r (Z = 0) = r p (Z = 0) = p. There are therefore no probabilistic issues in the time evolution from Z = 0 to Z. The only uncertainty stems from the fact that our knowledge of the initial condition is probabilistic in nature. The phase space definition of the equilibrium time correlation function is therefore. [Pg.195]

The conditions are such that the particle is originally in a potential hole, but it may escape in the course of time by passing over a potential barrier. The analytical problem is to calculate the escape probability as a function of the temperature and of the viscosity of the medium, and then to compare the values so found with the ones of the activated state method. For sake of simplicity, Kramers studied only the one-dimensional model, and the calculation rests on the equation of diffusion obeyed by a density distribution of particles in the. phase space. Definite results can be obtained in the limiting cases of small and large viscosity, and in both cases there is a close analogy with the Cristiansen treatment of chemical reactions as a diffusion problem. When the potential barrier corresponds to a rather smooth maximum, a reliable solution is obtained for any value of the viscosity, and, within a large range of values of the viscosity, the escape probability happens to be practically equal to that computed by the activated state method. [Pg.130]

Dissipative systems whether described as continuous flows or Poincare maps are characterized by the presence of some sort of internal friction that tends to contract phase space volume elements. They are roughly analogous to irreversible CA systems. Contraction in phase space allows such systems to approach a subset of the phase space, C P, called an attractor, as t — oo. Although there is no universally accepted definition of an attractor, it is intuitively reasonable to demand that it satisfy the following three properties ([ruelle71], [eckmanSl]) ... [Pg.170]

The variables x and p are the positions and momenta of all the particles. With those definitions, it is possible to define, 4( ) in terms of an integral in the phase space... [Pg.124]

Newton, the limit h —> 0 is singular. The symmetries underlying quantum and classical dynamics - unitarity and symplecticity, respectively - are fundamentally incompatible with the opposing theory s notion of a physical state quantum-mechanically, a positive semi-definite density matrix classically, a positive phase-space distribution function. [Pg.53]

Aeeording to Eq. (10), (x 0(Xc,Pc) x") is aphase spaee path integral representation for the operator 27t/iexp —pA, where all the paths run from x to x", but their eentroids are eonstrained to the values of Xc and po. Integration over the diagonal element, whieh corresponds to the trace operation, leads to the usual definition of the phase space centroid density multiplied by 2nH. In this review and in Refs. 9,10 this multiplicative factor is included in the definition of the centroid distribution function, pc (xc, pc). Equation (6) thus becomes equivalent to... [Pg.51]

In the general approach to classical statistical mechanics, each particle is considered to occupy a point in phase space, i.e., to have a definite position and momentum, at a given instant. The probability that the point corresponding to a particle will fall in any small volume of the phase space is taken proportional to die volume. The probability of a specific arrangement of points is proportional to the number of ways that the total ensemble of molecules could be permuted to achieve the arrangement. When this is done, and it is further required that the number of molecules and their total energy remain constant, one can obtain a description of the most probable distribution of the molecules in phase space. Tlie Maxwell-Boltzmann distribution law results. [Pg.1539]

While writing the above expression, the facts that have been used are GsD = CSC, GsBD = CqC0, and (G ) 1 = (CsylC l. Note that the definition of GsBD is different from the previous formulation [9] this follows from the difference in definition of CB, which has been discussed before. Here Cs and C are the phase space correlation functions defined as... [Pg.102]

Thus, we have found that the mechanisms of escape from a nonhyperbolic attractor and a quasihyperbolic (Lorenz) attractor are quite different, and that the prehistory of the escape trajectories reflects the different structure of their chaotic attractors. The escape process for the nonhyperbolic attractor is realized via several steps, which include transitions between low-period saddle-cycles coexisting in the system phase space. The escape from the Lorenz attractor consist of two qualitatively different stages the first is defined by the stable and unstable manifolds of the saddle center point, and lies on the attractor the second is the escape itself, crossing the saddle boundary cycle surrounding the stable point attractor. Finally, we should like to point out that our main results were obtained via an experimental definition of optimal paths, confirming our experimental approach as a powerful instrument for investigating noise-induced escape from complex attractors. [Pg.517]

The quantum mechanical definition of a distribution function in the classical phase-space is an old theme in theoretical physics. Most frequently used is the so-called Wigner distribution function (Wigner 1932 Hillery, O Connell, Scully, and Wigner 1984). Let us consider a onedimensional system with coordinate R and corresponding classical momentum P. The Wigner distribution function is defined as... [Pg.99]

Phase space theory can be thought of as, in effect, considering a loose or, as it is sometimes called, orbiting [333] transition state regardless of the nature of the reaction. The need to select transition state properties for each individual reaction considered is avoided and it has been argued that a virtue of the theory is that it gives definite predictions [452]. [Pg.61]

As it was already written above, we would like to study structural changes in the charge distribution between macroscopic objects, that is caused by the image forces, and depends on the wall-to-wall distance. To obtain direct structural information about the system, we will introduce a configurational analogue of the phase-space distribution function. At equilibrium, the definition of an fth order distribution function given by Eq. (12) can be applied to the equilibrium probability density [Eq. (13)], and the integration with respect to impulses can easily be carried out. We write for the rth order local density... [Pg.452]


See other pages where Phase space, definition is mentioned: [Pg.130]    [Pg.227]    [Pg.130]    [Pg.227]    [Pg.2271]    [Pg.735]    [Pg.215]    [Pg.215]    [Pg.122]    [Pg.9]    [Pg.228]    [Pg.206]    [Pg.233]    [Pg.69]    [Pg.128]    [Pg.50]    [Pg.189]    [Pg.75]    [Pg.442]    [Pg.69]    [Pg.649]    [Pg.250]    [Pg.5]    [Pg.515]    [Pg.50]    [Pg.99]    [Pg.298]    [Pg.10]    [Pg.340]    [Pg.10]    [Pg.168]    [Pg.58]    [Pg.87]    [Pg.38]    [Pg.38]   
See also in sourсe #XX -- [ Pg.19 ]




SEARCH



Phase space

Phase, definition

© 2024 chempedia.info