Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Perturbation theory numerical experimentation

Field (CASSCF) Second-order Perturbation Theory (CAS-PT2) Configuration Interaction Core-Valence Correlation Effects Coupled-cluster Theory Experimental Data Evaluation and Quality Control G2 Theory Heats of Formation Isoelectronic Isogyric Reactions M0ller-Plesset Perturbation Theory Numerical Hartree-Fock Methods for Molecules r 12-Dependent Wavefunctions Relativistic Theory and Applications Spectroscopy Computational Methods Spin Contamination Transition Metals Applications,... [Pg.127]

Storer model used in this theory enables us to describe classically the spectral collapse of the Q-branch for any strength of collisions. The theory generates the canonical relation between the width of the Raman spectrum and the rate of rotational relaxation measured by NMR or acoustic methods. At medium pressures the impact theory overlaps with the non-model perturbation theory which extends the relation to the region where the binary approximation is invalid. The employment of this relation has become a routine procedure which puts in order numerous experimental data from different methods. At low densities it permits us to estimate, roughly, the strength of collisions. [Pg.7]

One possibility for this was demonstrated in Chapter 3. If impact theory is still valid in a moderately dense fluid where non-model stochastic perturbation theory has been already found applicable, then evidently the continuation of the theory to liquid densities is justified. This simplest opportunity of unified description of nitrogen isotropic Q-branch from rarefied gas to liquid is validated due to the small enough frequency scale of rotation-vibration interaction. The frequency scales corresponding to IR and anisotropic Raman spectra are much larger. So the common applicability region for perturbation and impact theories hardly exists. The analysis of numerous experimental data proves that in simple (non-associated) systems there are three different scenarios of linear rotator spectral transformation. The IR spectrum in rarefied gas is a P-R doublet with either resolved or unresolved rotational structure. In the process of condensation the following may happen. [Pg.224]

The SRS perturbation theory is the simplest of all SAPT expansions proposed thus far, and in view of numerous recent applications to complexes of direct experimental interest (see Refs. (1, 31) for reviews) it is important to study the convergence properties of this expansion, and its applicability in low orders to interactions of many-electron systems. When... [Pg.172]

Experimental data including the acidic species in the vapor phase within the above concentration range are scarce. Only very few publications of VLE data in that range are available [168, 173]. In contrast, numerous vapor pressure curves are accessible in literature. Chemical equilibrium data for the polycondensation and dissociation reaction in that range (>100 wt%) are so far not published [148]. However, a starting point to describe the vapor-Uquid equilibrium at those high concentratirMis is given by an EOS which is based on the fundamentals of the perturbation theory of Barker [212, 213]. Built on this theory, Sadowski et al. [214] have developed the PC-SAFT (Perturbed Chain Statistical Associated Fluid Theory) equation of state. The PC-SAFT EOS and its derivatives offer the ability to be fuUy predictive in combination with quantum mechanically based estimated parameters [215] and can therefore be used for systems without or with very little experimental data. Nevertheless, a model validation should be undertaken. Cameretti et al. [216] adopted the PC-SAFT EOS for electrolyte systems (ePC-SAFT), but the quality for weak electrolytes as phosphoric... [Pg.407]

Rice, J.R., 1988, Cracks fronts trapped by arrays of obstacles solution based on linear perturbation theory, In Analytical, Numerical and Experimental Aspects of Three Dimensional Fracture Process, A. Rosakis, K. Ravi Chandar and Y. Rajapakse, eds., 91, ASME, p. 175. [Pg.480]

The decisive advantage of the original Elory-Huggins theory [1] lies in its simplicity and in its ability to reproduce some central features of polymer-containing mixtures qualitatively, in spite of several unrealistic assumptions. The main drawbacks are in the incapacity of this approach to model reality in a quantitative manner and in the lack of theoretical explanations for some well-established experimental observations. Numerous attempts have therefore been made to extend and to modify the Elory-Huggins theory. Some of the more widely used approaches are the different varieties of the lattice fluid and hole theories [2], the mean field lattice gas model [3], the Sanchez-Lacombe theory [4], the cell theory [5], different perturbation theories [6], the statistical-associating-fluid-theory [7] (SAET), the perturbed-hard-sphere chain theory [8], the UNIEAC model [9], and the UNIQUAC [10] model. More comprehensive reviews of the past achievements in this area and of the applicability of the different approaches are presented in the literature [11, 12]. [Pg.17]

Contemporary Approaches. Numerous advanced theories have been formulated in the last decades to reproduce or even predict experimental findings for polymer containing mixtures. Most of them are particularly suitable for the description of some phenomena and special kinds of systems, but all have in common that they have lost the straightforwardness characterizing the Flory-Huggins theory. The following, incomplete collocation states some of the wider used approaches These are the different forms of the lattice fluid and hole theories (38), the mean field lattice gas model (39), the Sanchez-Lacombe theory(40), the cell theory (41), various perturbation theories (42), the statistical-associating-fluid-theory (43) (SAFT), the perturbed-hard-sphere chain theory (44), the... [Pg.1079]

The concept of calculating the interaction energy of two chemical systems A and B perturbatively is not at all a new idea. The first intermolecular perturbation expansion was proposed [22] just a few years after the foundations of quantum mechanics had been laid. Since then, numerous other expansions, now known under a common name of symmetry-adapted perturbation theory, have been introduced and the perturbation theory of intermolecular forces is now a fully mature approach. Thanks to the development of the many-body SAPT [23] and of a general-utility closed-shell SAPT computer code [24], the perturbative approach to intermolecular interactions has been successfully applied to construct PESs for numerous interacting dimers of theoretical and experimental interest [19-21,25-27]. One of the notable achievements of SAPT is an accurate description of the interactions between water molecules [21,28-32]. A recent paper by Keutsch et al. [33] compares the complete spectra of the water dimer with theoretical predictions obtained using an empirical potential fitted to extensive spectroscopic data, and with the predictions from a SAPT potential. These comparisons show that the latter potential probably provides the best current characterization of the water dimer force field. In another recent application, an SAPT PES for heUum in-... [Pg.46]


See other pages where Perturbation theory numerical experimentation is mentioned: [Pg.437]    [Pg.767]    [Pg.66]    [Pg.81]    [Pg.122]    [Pg.59]    [Pg.173]    [Pg.205]    [Pg.205]    [Pg.102]    [Pg.96]    [Pg.113]    [Pg.249]    [Pg.42]    [Pg.392]    [Pg.141]    [Pg.437]    [Pg.87]    [Pg.270]    [Pg.815]    [Pg.732]    [Pg.263]    [Pg.116]    [Pg.229]    [Pg.186]    [Pg.147]    [Pg.405]    [Pg.638]    [Pg.50]    [Pg.115]    [Pg.154]    [Pg.343]    [Pg.324]    [Pg.109]    [Pg.33]    [Pg.42]    [Pg.1202]    [Pg.956]    [Pg.160]    [Pg.286]    [Pg.42]   
See also in sourсe #XX -- [ Pg.263 ]




SEARCH



Theory numerical

© 2024 chempedia.info