Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Partitioning of carbocations between

How Does Structure Determine Organic Reactivity Partitioning of Carbocations between Addition of Nucleophiles and Deprotonation... [Pg.67]

In summary, there now exists a body of data for the reactions of carbocations where the values of kjkp span a range of > 106-fold (Table 1). This requires that variations in the substituents at a cationic center result in a >8 kcal mol-1 differential stabilization of the transition states for nucleophile addition and proton transfer which have not yet been fully rationalized. We discuss in this review the explanations for the large changes in the rate constant ratio for partitioning of carbocations between reaction with Bronsted and Lewis bases that sometimes result from apparently small changes in carbocation structure. [Pg.72]

It is often difficult to understand at an intuitive level the explanation for the effect of changing substituents on the rate constant ratio kjkp for partitioning of carbocations between nucleophilic addition of solvent and deprotonation. In these cases, insight into the origins of the changes in this rate constant ratio requires a systematic evaluation of substituent effects on the following ... [Pg.81]

Fig. 4 Free energy reaction coordinate profiles that illustrate a change in the relative kinetic barriers for partitioning of carbocations between nucleophilic addition of solvent and deprotonation resulting from a change in the curvature of the potential energy surface for the nucleophile addition reaction. This would correspond to an increase in the intrinsic barrier for the thermoneutral carbocation-nucleophile addition reaction. Fig. 4 Free energy reaction coordinate profiles that illustrate a change in the relative kinetic barriers for partitioning of carbocations between nucleophilic addition of solvent and deprotonation resulting from a change in the curvature of the potential energy surface for the nucleophile addition reaction. This would correspond to an increase in the intrinsic barrier for the thermoneutral carbocation-nucleophile addition reaction.
The results described in this review provide support for the following generalizations about the influence of thermodynamics and intrinsic kinetic barriers on the partitioning of carbocations between nucleophilic addition of aqueous solvents to form a tetrahedral adduct (ks) and proton transfer to these solvents to form an alkene (kp). [Pg.110]

Nuclear motion, the principle of least, and the theory of stereoelectronic control, 24, 113 Nucleophiles, partitioning of carbocations between addition and deprotonation. 35, 67 Nucleophilic aromatic photosubstitution, 11,225 Nucleophilic catalysis of ester hydrolysis and related reactions, 5,237 Nucleophilic displacement reactions, gas-phase, 21, 197... [Pg.339]

Partitioning of carbocations between addition of nucleophiles and deprotonation, 35, 67 Perchloro-organic chemistry structure, spectroscopy and reaction pathways, 25, 267 Permutational isomerization of pentavalent phosphorus compounds, 9, 25 Phase-transfer catalysis by quaternary ammonium salts, 15, 267 Phosphate esters, mechanism and catalysis of nucleophilic substitution in, 25, 99 Phosphorus compounds, pentavalent, turnstile rearrangement and pseudoration in permutational isomerization, 9, 25... [Pg.339]

Nucleophiles, partitioning of carbocations between addition and deprotonation, 35, 67... [Pg.283]

Partitioning of carbocations between addition of nucleophiles and deprotonation,... [Pg.408]


See other pages where Partitioning of carbocations between is mentioned: [Pg.69]    [Pg.105]   


SEARCH



Of carbocations

© 2024 chempedia.info