Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Partition functions intermolecular interaction, perturbative

Fickett in "Detonation Properties of Condensed Explosives Calculated with an Equation of State Based on Intermolecular Potentials , Los Alamos Scientific Lab Rept LA-2712 (1962), pp 34-38, discusses perturbation theories as applied to a system of deton products consisting of two phases one, solid carbon in some form, and the other, a fluid mixt of the remaining product species. He divides these theories into two classes conformal solution theory, and what he chooses to call n-fluid theory. Both theories stem from a common approach, namely, perturbation from a pure fluid whose props are assumed known. They differ mainly in the choice of expansion variables. The conformal solution method begins with the assumption that all of the intermolecular interaction potentials have the same functional form. To obtain the equation of state of the mixt, some reference fluid obeying a common reduced equation of state is chosen, and the mixt partition function is expanded about that of the reference fluid... [Pg.470]

Contrary to the previously described supermolecular approach, perturbation theory treatment allows for the partition of the interaction energy into physically interpretable components. The most frequently used method for this purpose is symmetry-adapted perturbation theory (SAPT) [13]. More recently, great effort has also been invested in the development of DFT-SAPT [14-16], In the present contribution, we use the variational-perturbational scheme [17-20], In this approach, the intermolecular interaction energy components are determined based on the wave functions of the subsystems evaluated in the dimer-centered basis set. Thus, both interaction energy and its components are BSSE-free. More details about this scheme can be found elsewhere [21-23]. The total intermolecular interaction energy at the MP2 level of theory can be expressed as follows ... [Pg.389]

In order to leam more about the nature of the intermolecular forces we will start with partitioning of the total molecular energy, AE, into individual contri butions, which are as close as possible to those we defined in intermolecular perturbation theory. Attempts to split AE into suitable parts were undertaken independently by several groups 83-85>. The most detailed scheme of energy partitioning within the framework of MO theory was proposed by Morokuma 85> and his definitions are discussed here ). This analysis starts from antisymmetrized wave functions of the isolated molecules, a and 3, as well as from the complete Hamiltonian of the interacting complex AB. Four different approximative wave functions are used to describe the whole system ... [Pg.26]


See other pages where Partition functions intermolecular interaction, perturbative is mentioned: [Pg.167]    [Pg.247]    [Pg.166]    [Pg.1385]    [Pg.32]    [Pg.5]    [Pg.1578]    [Pg.165]   


SEARCH



Functional interactions

Interactive function

Intermolecular interaction

Intermolecular perturbation

Partitioning partition functions

Perturbation function

Perturbing function (

© 2024 chempedia.info