Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Partial Differential Equations in Semi-infinite Domains

Partial Differential Equations in Semi-infinite Domains [Pg.295]

Mathematical modeling of mass or heat transfer in solids involves Pick s law of mass transfer or Fourier s law of heat conduction. Engineers are interested in the distribution of heat or concentration across the slab, or the material in which the experiment is performed. This process is represented by parabolic partial differential equations (unsteady state) or elliptic partial differential equations. When the length of the domain is large, it is reasonable to consider the domain as semi-infinite which simplifies the problem and helps in obtaining analytical solutions. These partial differential equations are governed by the initial condition and the boundary condition at x = 0. The dependent variable has to be finite at distances far (x = ) from the origin. Both parabolic and elliptic partial [Pg.295]


Transient heat conduction or mass transfer in solids with constant physical properties (diffusion coefficient, thermal diffusivity, thermal conductivity, etc.) is usually represented by a parabolic partial differential equation. For steady state heat or mass transfer in solids, potential distribution in electrochemical cells is usually represented by elliptic partial differential equations. In this chapter, we describe how one can arrive at the analytical solutions for linear parabolic partial differential equations and elliptic partial differential equations in semi-infinite domains using the Laplace transform technique, a similarity solution technique and Maple. In addition, we describe how numerical similarity solutions can be obtained for nonlinear partial differential equations in semi-infinite domains. [Pg.295]

In this chapter, analytical solutions were obtained for parabolic and elliptic partial differential equations in semi-infinite domains. In section 4.2, the given linear parabolic partial differential equations were converted to an ordinary differential equation boundary value problem in the Laplace domain. The dependent variable was then solved in the Laplace domain using Maple s dsolve command. The solution obtained in the Laplace domain was then converted to the time domain using Maple s inverse Laplace transform technique. Maple is not capable of inverting complicated functions. Two such examples were illustrated in section 4.3. As shown in section 4.3, even when Maple fails, one can arrive at the transient solution by simplifying the integrals using standard Laplace transform formulae. [Pg.348]

In section 4.4, the given linear parabolic partial differential equation in semi-infinite domain was solved by combining the independent variables (similarity solution). This technique is capable of providing special function solutions as shown in example 4.9. In section 4.5, elliptic partial differential equations were solved using the similarity solution technique. In section 4.6, similarity solution was extended for nonlinear parabolic and elliptic partial differential equations. [Pg.348]

Both the Laplace transform and the similarity solution techniques are powerful techniques for partial differential equations in semi-infinite domains. The Laplace transform technique can be used for all linear partial differential equations with all possible boundary conditions. The similarity solution can be used only if the independent variables can be combined and if the boundary conditions in x and t can be converted to boundary conditions in the combined variable. In addition, unlike the Laplace transform technique, the similarity solution technique cannot handle partial differential equations in which the dependent variable appears explicitly. The Laplace transform cannot handle elliptic or nonlinear partial differential equations. The similarity solution can be used for elliptic and for a few nonlinear partial differential equations as shown in section 4.6. There are thirteen examples in this chapter. [Pg.348]


See other pages where Partial Differential Equations in Semi-infinite Domains is mentioned: [Pg.865]   


SEARCH



Differential equations partial

Infinite domains

Partial differential

Partial equation

Semi - infinite domains

Semi-differentiation

© 2024 chempedia.info