Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Partial differential equations Fourier transform

References Brown, J. W., and R. V. Churchill, Fourier Series and Boundary Value Problems, 6th ed., McGraw-Hill, New York (2000) Churchill, R. V, Operational Mathematics, 3d ed., McGraw-Hill, New York (1972) Davies, B., Integral Transforms and Their Applications, 3d ed., Springer (2002) Duffy, D. G., Transform Methods for Solving Partial Differential Equations, Chapman Hall/CRC, New York (2004) Varma, A., and M. Morbidelli, Mathematical Methods in Chemical Engineering, Oxford, New York (1997). [Pg.37]

This equation is a partial differential equation whose order depends on the exact form of/ and F. Its solution is usually not straightforward and integral transform methods (Laplace or Fourier) are necessary. The method of separation of variables rarely works. Nevertheless, useful information of practical geological importance is apparent in the form taken by this equation. The only density distributions that are time independent must obey... [Pg.366]

Much of the mathematical analysis required in physical chemistry can be handled by analytical methods. Throughout this book and in all physical chemisby textbooks, a variety of calculus techniques ate used freely differentiation and integration of functions of several variables solution of ordinary and partial differential equations, including eigenvalue problems some integral equations, mostly linear. There is occasional use of other tools such as vectors and vector analysis, coordinate transformations, matrices, determinants, and Fourier methods. Discussion of all these topics will be found in calculus textbooks and in other standard mathematical texts. [Pg.32]

The next most familiar part of the picture is the upper right-hand corner. This i s the domain of classical applied mathematics and mathematical physics where the linear partial differential equations live. Here we find Maxwell s equations of electricity and magnetism, the heat equation, Schrodinger s wave equation in quantum mechanics, and so on. These partial differential equations involve an infinite continuum of variables because each point in space contributes additional degrees of freedom. Even though these systems are large, they are tractable, thanks to such linear techniques as Fourier analysis and transform methods. [Pg.13]

In this appendix some important mathematical methods are briefly outlined. These include Laplace and Fourier transformations which are often used in the solution of ordinary and partial differential equations. Some basic operations with complex numbers and functions are also outlined. Power series, which are useful in making approximations, are summarized. Vector calculus, a subject which is important in electricity and magnetism, is dealt with in appendix B. The material given here is intended to provide only a brief introduction. The interested reader is referred to the monograph by Kreyszig [1] for further details. Extensive tables relevant to these topics are available in the handbook by Abramowitz and Stegun [2]. [Pg.582]

The methods for solving a second-order partial differential equation are separation of variables, similarity variable, Laplace transform, Fourier transform, and Hankel transform. Each of the... [Pg.118]

Y. Wang, G. W. Wei, and S.-Y. Yang. Partial differential equation transform-Variationai formulation and Fourier analysis. Int J. Numerical Methods Biomed. Eng., 27 1996-2020, 2011. [Pg.455]

The general method for solving Eqs. (11) consists of transforming the partial differential equations with the help of Fourier-Laplace transformations into a set of linear algebraic equations that can be solved by the standard techniques of matrix algebra. The roots of the secular equation are the normal modes. They yield the laws for the decays in time of all perturbations and fluctuations which conserve the stability of the system. The power-series expansion in the reciprocal space variables of the normal modes permits identification of relaxation, migration, and diffusion contributions. The basic information provided by the normal modes is that the system escapes the perturbation by any means at its disposal, regardless of the particular physical or chemical reason for the decay. [Pg.104]

Equation 4.15 is a second-order partial differential equation. When treating diffusion phenomena with Pick s second law, the typical aim is to solve this equation to yield solutions for the concentration profile of species i as a function of time and space [Ci(x,f)]- By plotting these solutions at a series of times, one can then watch how a diffusion process progresses with time. Solution of Pick s second law requires the specification of a number of boundary and initial conditions. The complexity of the solutions depends on these boundary and initial conditions. Por very complex transient diffusion problems, numerical solution methods based on finite difference/finite element methods and/or Fourier transform methods are commonly implemented. The subsections that follow provide a number of examples of solutions to Pick s second law starting with an extremely simple example and progressing to increasingly more complex situations. The homework exercises provide further opportunities to apply Pick s Second Law to several interesting real world examples. [Pg.96]

One of the most common solution techniques applicable to linear homogeneous partial differential equation problems involves the use of Fourier series. A discussion of the methods of solution of linear partial differential equations will be the topic of the next chapter. In this chapter, a brief outline of Fourier series is given. The primary concerns in this chapter are to determine when a function has a Fourier series expansion and then, does the series converge to the function for which the expansion was assumed Also, the topic of Fourier transforms will be briefly introduced, as it can also provide an alternative approach to solve certain types of linear partial differential equations. [Pg.153]

A very valuable technique, useful in the solution of ordinary and partial differential equations as well as differential delay equations, is the use of Laplace transforms. Laplace transforms (Churchill, 1972), though less familiar and somewhat more difficult to invert than their cousins, Fourier transforms, are broadly applicable and often enable us to convert differential equations to algebraic equations. For rate equations based on mass action kinetics, taking the Laplace transform affords sets of polynomial algebraic equations. For DDEs, we obtain transcendental equations. [Pg.213]

We present a brief introduction to coupled transport processes described macroscopically by hydrodynamic equations, the Navier-Stokes equations [4]. These are difficult, highly non-linear coupled partial differential equations they are frequently approximated. One such approximation consists of the Lorenz equations [5,6], which are obtained from the Navier-Stokes equations by Fourier transform of the spatial variables in those equations, retention of first order Fourier modes and restriction to small deviations from a bifurcation of an homogeneous motionless stationary state (a conductive state) to an inhomogeneous convective state in Rayleigh-Benard convection (see the next paragraph). The Lorenz equations have been applied successfully in various fields ranging from meteorology to laser physics. [Pg.83]

The evolution of polymer composition in the spatial domain can be derived using the Cahn-Hilliard equation. In numerical simulations, the fourth-order nonlinear parabolic partial differential equations are solved using Fourier-spectral methods, while the partial differential equations are transferred by the discrete cosine transform into ordinary partial equations. The result is then transformed back with the inverse cosine transform to the ordinary space. [Pg.516]

Brigham (1974) contains a short section ( The Ubiquitous Fourier Transform ) in which he provides references to the application of FTs to linear systems, antennas, optics, random processes, probability, the uncertainty principle of quantum physics, and the boundary-value problems of partial differential equations. [Pg.547]


See other pages where Partial differential equations Fourier transform is mentioned: [Pg.464]    [Pg.467]    [Pg.352]    [Pg.291]    [Pg.294]    [Pg.246]    [Pg.307]    [Pg.110]    [Pg.309]    [Pg.75]    [Pg.356]    [Pg.264]    [Pg.468]    [Pg.471]    [Pg.186]    [Pg.986]    [Pg.466]    [Pg.158]    [Pg.138]    [Pg.123]    [Pg.196]   
See also in sourсe #XX -- [ Pg.495 ]




SEARCH



Differential equations partial

Fourier equation

Fourier transform equation

Partial differential

Partial equation

Transformation equation

Transformer, differential

© 2024 chempedia.info