Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Palladium energy

In collisions where =M2 at 0 = 180° tlie incident particle is at rest after the collision, with all the energy transferred to the target atom. For 2.0 MeV helium ions colliding with silicon the recoil energy 2 is 0.88 MeV and from palladium is 0.28 MeV. [Pg.1831]

Cold fusion has been reported to result from electrolyzing heavy water using palladium [7440-05-3] Pd, cathodes (59,60). Experimental verification of the significant excess heat output and various nuclear products are stiU under active investigation (61,62) (see Eusion energy). [Pg.78]

Palladium forms clusters of these types far less readily than nickel and platinum, unless they are stabilized by o-donor ligands such as phosphines. This may be due to the lower energy of Pd-Pd bonds as reflected in the sublimation energies, 427, 354 and 565 kJ mol for Ni, Pd and Pt. [Pg.1170]

Standard Free Energies, Enthalpies, and Entropies of Formation of Palladium and Nickel Hydrides ... [Pg.250]

When studying the kinetics of diffusion of hydrogen through palladium, Farkas (28) noticed the difference in catalytic activity of both sides of the palladium disks or tubes for the parahydrogen conversion the energy of activation was greater on the inlet side than on the outlet side, where due to extensive desorption of the hydrogen its concentration could be lower. [Pg.254]

The poisoning effect of hydrogen when dissolved in palladium was for the first time properly described and interpreted by Couper and Eley (29) in 1950 in their study of the fundamental importance of the development of theories of catalysis on metals. The paper and the main results relate to the catalytic effect of an alloying of gold to palladium, on the parahydrogen conversion. This system was chosen as suitable for attempting to relate catalyst activity to the nature and occupation of the electronic energy... [Pg.254]

Table III lists the kinetic equations for the reactions studied by Scholten and Konvalinka when the hydride was the catalyst involved. Uncracked samples of the hydride exhibit far greater activation energy than does the a-phase, i.e. 12.5 kcal/mole, in good accord with 11 kcal/mole obtained by Couper and Eley for a wire preexposed to the atomic hydrogen. The exponent of the power at p amounts to 0.64 no matter which one of the reactions was studied and under what conditions of p and T the kinetic experiments were carried out. According to Scholten and Konvalinka this is a unique quantitative factor common to the reactions studied on palladium hydride as catalyst. It constitutes a point of departure for the authors proposal for the mechanism of the para-hydrogen conversion reaction catalyzed by the hydride phase. Table III lists the kinetic equations for the reactions studied by Scholten and Konvalinka when the hydride was the catalyst involved. Uncracked samples of the hydride exhibit far greater activation energy than does the a-phase, i.e. 12.5 kcal/mole, in good accord with 11 kcal/mole obtained by Couper and Eley for a wire preexposed to the atomic hydrogen. The exponent of the power at p amounts to 0.64 no matter which one of the reactions was studied and under what conditions of p and T the kinetic experiments were carried out. According to Scholten and Konvalinka this is a unique quantitative factor common to the reactions studied on palladium hydride as catalyst. It constitutes a point of departure for the authors proposal for the mechanism of the para-hydrogen conversion reaction catalyzed by the hydride phase.
Fig. 8. Arrhenius plots for the formic acid decomposition on palladium foil (1) and small pieces of this foil (2) at a higher temperature range, when hydrogen evolving as a product of the reaction was absorbed by Pd and transformed into the /3-Pd-H hydride phase. At the lower temperature range the reaction proceeds on the a-Pd-H phase, with a higher activation energy when the foil was hydrogen pretreated (2a), and a lower activation energy for a degassed Pd foil (3a). After Brill and Watson (57). Fig. 8. Arrhenius plots for the formic acid decomposition on palladium foil (1) and small pieces of this foil (2) at a higher temperature range, when hydrogen evolving as a product of the reaction was absorbed by Pd and transformed into the /3-Pd-H hydride phase. At the lower temperature range the reaction proceeds on the a-Pd-H phase, with a higher activation energy when the foil was hydrogen pretreated (2a), and a lower activation energy for a degassed Pd foil (3a). After Brill and Watson (57).
The mechanism of the poisoning effect of nickel or palladium (and other metal) hydrides may be explained, generally, in terms of the electronic theory of catalysis on transition metals. Hydrogen when forming a hydride phase fills the empty energy levels in the nickel or palladium (or alloys) d band with its Is electron. In consequence the initially d transition metal transforms into an s-p metal and loses its great ability to chemisorb and properly activate catalytically the reactants involved. [Pg.289]

Identify the element with the higher first ionization energy in each of the following pairs (a) iron and nickel (b) nickel and copper (c) osmium and platinum (d) nickel and palladium ... [Pg.813]

For metals, the close-packed surfaces have, in general, the smallest surface free energy and therefore these surfaces dominate on small particles, e.g. the (111) surfaces for the fee and hep metals, and the (110) surface for the bcc metals, although on iron particles the (100) surface is abundantly present. Surface free energies have been tabulated [L. Vitos, A. Ruban, H. Shriver and J. Kollar, Surf. Sci. 411 (1998) 186], To give an idea of how the values depend on crystal face we list some values for palladium ... [Pg.180]

Neurock and coworkers [M. Neurock, V. Pallassana and R.A. van Santen, J. Am. Chem. Soc. 122 (2000) 1150] performed density functional calculations for this reaction scheme up to the formation of the ethyl fragment, for a palladium(lll) surface. Figure 6.38(a) shows the potential energy diagram, starting from point at which H atoms are already at the surface. As the diagram shows, ethylene adsorbs in the Jt-bonded mode with a heat adsorption of 30 kj mol and conversion of the latter into the di-a bonded mode stabilizes the molecule by a further 32 kJ mol . ... [Pg.258]

Figure 6.38. Potential energy diagram for the hydrogenation of ethylene to the ethyl (C2H5) intermediate on a palladium(m) surface. The zero of energy has been set at that of an adsorbed H atom, (a) Situation at low coverage ethylene adsorbed in the relatively stable di-cr bonded mode, in which the two carbon atoms bind to two metal atoms. In the three-centered transition state, hydrogen and carbon bind to the same metal atom, which leads to a considerable increase in the energy... Figure 6.38. Potential energy diagram for the hydrogenation of ethylene to the ethyl (C2H5) intermediate on a palladium(m) surface. The zero of energy has been set at that of an adsorbed H atom, (a) Situation at low coverage ethylene adsorbed in the relatively stable di-cr bonded mode, in which the two carbon atoms bind to two metal atoms. In the three-centered transition state, hydrogen and carbon bind to the same metal atom, which leads to a considerable increase in the energy...
Figure 10.6. Approximate energy diagram of CO oxidation on palladium. Note the largest energy barrier is the CO + O recombination. [Adapted from T. Engel and G. Ertl.J, Chem. Rhys. 69 (1978) 1267.]... Figure 10.6. Approximate energy diagram of CO oxidation on palladium. Note the largest energy barrier is the CO + O recombination. [Adapted from T. Engel and G. Ertl.J, Chem. Rhys. 69 (1978) 1267.]...
In March 1989, Martin Fleischmann and Stanley Pons reported their discovery of cold nuclear fusion. They announced that during electrolysis of a solution of hthium hydroxide in heavy water (DjO) with a cathode made of massive palladium, nuclear transformations of deuterium at room temperature can be recorded. This announcement, which promised humankind a new and readily available energy source, was seized upon immediately by the mass media in many countries. Over the following years, research was undertaken worldwide on an unprecedented scale in an effort to verify this finding. [Pg.632]


See other pages where Palladium energy is mentioned: [Pg.1831]    [Pg.475]    [Pg.366]    [Pg.43]    [Pg.43]    [Pg.538]    [Pg.139]    [Pg.194]    [Pg.41]    [Pg.565]    [Pg.566]    [Pg.875]    [Pg.174]    [Pg.218]    [Pg.90]    [Pg.91]    [Pg.251]    [Pg.255]    [Pg.255]    [Pg.256]    [Pg.257]    [Pg.263]    [Pg.265]    [Pg.288]    [Pg.69]    [Pg.98]    [Pg.305]    [Pg.194]    [Pg.7]    [Pg.69]    [Pg.817]    [Pg.199]    [Pg.350]    [Pg.250]    [Pg.42]    [Pg.634]   
See also in sourсe #XX -- [ Pg.15 , Pg.16 , Pg.17 , Pg.18 , Pg.19 ]




SEARCH



Palladium activation energy

Palladium atomic energy levels

Palladium binding energy shift

Palladium clusters energy levels

Palladium energy levels

Palladium hydrogenation activation energy

Palladium ionization energy

Palladium-based membranes Energy Centre of the

© 2024 chempedia.info