Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Palladium complexes organic halides

Seven procedures descnbe preparation of important synthesis intermediates A two-step procedure gives 2-(HYDROXYMETHYL)ALLYLTRIMETH-YLSILANE, a versatile bifunctional reagent As the acetate, it can be converted to a tnmethylenemethane-palladium complex (in situ) which undergoes [3 -(- 2] annulation reactions with electron-deficient alkenes A preparation of halide-free METHYLLITHIUM is included because the presence of lithium halide in the reagent sometimes complicates the analysis and use of methyllithium Commercial samples invariably contain a full molar equivalent of bromide or iodide AZLLENE IS a fundamental compound in organic chemistry, the preparation... [Pg.224]

The postulated steps that constitute the Suzuki coupling process are shown in Scheme 25. After oxidative addition of the organic halide to the palladium(o) catalyst, it is presumed that a metathetical displacement of the halide substituent in the palladium(ii) complex A by ethoxide ion (or hydroxide ion) takes place to give an alkoxo-palladium(ff) complex B. The latter complex then reacts with the alkenylborane, generating the diorganopalladium complex C. Finally, reductive elimination of C furnishes the cross-coupling product (D) and regenerates the palladium(o) catalyst. [Pg.589]

A review10 with eight references describes the photochemical reactions of the binuclear palladium(0) complex [Pd2(dppm)3] (dppm = bis(diphenyl)phosphinomethane) with organic halides. [Pg.557]

The dehalogenation of organic halides by organotin hydrides takes place in most cases with a free-radical mechanism [1, 84, 85], The stereospecific reduction of 1,1-dibromo-l-alkenes with Bu3SnH discovered by Uenishi and coworkers [86-89], however, did not occur in the absence of palladium complexes and did not involve radicals. For the synthesis of (Z)-l-bromo-l-alkenes, [(PPh3)4Pd] proved to be the most effective catalyst which could also be generated in situ. The reaction in Eq. (7) proceeded at room temperature and a wide range of solvents could be used. [Pg.525]

Recently, the groups of Fu and Buchwald have coupled aryl chlorides with arylboronic acids [34, 35]. The methodology may be amenable to large-scale synthesis because organic chlorides are less expensive and more readily available than other organic halides. Under conventional Suzuki conditions, chlorobenzene is virtually inert because of its reluctance to oxidatively add to Pd(0). However, in the presence of sterically hindered, electron-rich phosphine ligands [e.g., P(f-Bu)3 or tricyclohexylphosphine], enhanced reactivity is acquired presumably because the oxidative addition of an aryl chloride is more facile with a more electron-rich palladium complex. For... [Pg.7]

Organic electroreductive coupling reactions using transition-metal complexes as catalysts have been widely investigated. Reviews on the subject have been published [89, 90]. The method involving the most common transition-metal complexes (nickel, cobalt, palladium) appears to be a useful tool to synthetize heterocycles from organic halides via radical intermediates. Nickel catalyst precursors are nickel(II) salts that are cathodically reduced either to nickel(I) or to nickel(O) and cobalt catalyst... [Pg.361]

Hydrodehalogenation of organic halides catalysed by Ru/tppms555 or palladium complexes generated from the ligands 20 (n=l, R=H) and 21 (R=Ph, n=3,4) (depicted in Table 2).124-125... [Pg.173]

Olefinic compounds will often insert into carbon-transition metal bonds as CO does, and this reaction is an important step in many catalytic syntheses. When this step is combined with an oxidative addition of an organic halide to a palladium(O) complex in the presence of a base, a very useful, catalytic olefinic substitution reaction results (26-29). The oxidative addition produces an organopalladium(II) halide, which then adds 1,2 to the olefinic reactant (insertion reaction). The adduct is unstable if there are hydrogens beta to the palladium group and elimination of a hydridopalladium salt occurs, forming a substituted olefinic product. The hydridopalladium salt then reforms the... [Pg.336]

Three methods are commonly employed for the in situ preparation of organopalladium derivatives (i) direct metallation of an arene or heterocyclic compound with a palladium(II) salt (ii) exchange of the organic group from a main group organometallic to a palladium(II) compound and (iii) oxidative addition of an organic halide, triflate or aryldiazonium salt to palladium(O) or a palladium(O) complex. [Pg.834]

Normally, the most practical vinyl substitutions are achieved by use of the oxidative additions of organic bromides, iodides, diazonium salts or triflates to palladium(0)-phosphine complexes in situ. The organic halide, diazonium salt or triflate, an alkene, a base to neutralize the acid formed and a catalytic amount of a palladium(II) salt, usually in conjunction with a triarylphosphine, are the usual reactants at about 25-100 C. This method is useful for reactions of aryl, heterocyclic and vinyl derviatives. Acid chlorides also react, usually yielding decarbonylated products, although there are a few exceptions. Likewise, arylsulfonyl chlorides lose sulfur dioxide and form arylated alkenes. Aryl chlorides have been reacted successfully in a few instances but only with the most reactive alkenes and usually under more vigorous conditions. Benzyl iodide, bromide and chloride will benzylate alkenes but other alkyl halides generally do not alkylate alkenes by this procedure. [Pg.835]


See other pages where Palladium complexes organic halides is mentioned: [Pg.219]    [Pg.154]    [Pg.567]    [Pg.648]    [Pg.54]    [Pg.21]    [Pg.388]    [Pg.390]    [Pg.486]    [Pg.222]    [Pg.24]    [Pg.286]    [Pg.146]    [Pg.137]    [Pg.154]    [Pg.1119]    [Pg.26]    [Pg.596]    [Pg.453]    [Pg.23]    [Pg.183]    [Pg.327]    [Pg.329]    [Pg.339]    [Pg.281]    [Pg.285]    [Pg.214]    [Pg.215]    [Pg.321]    [Pg.1]    [Pg.4]    [Pg.1367]    [Pg.1268]    [Pg.1276]    [Pg.1323]    [Pg.54]    [Pg.167]    [Pg.166]    [Pg.245]   
See also in sourсe #XX -- [ Pg.191 ]




SEARCH



Halide complexation

Halides complex

Halides, organic

Organic complexation

Palladium complexes halides

Palladium halides

© 2024 chempedia.info