Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Oxide support effect molecular structure

These studies indicate that the charge transfer at the metal-oxide interface alters the electronic structure of the metal thin film, which in turn affects the adsorption of molecules to these surfaces. Understanding the effect that an oxide support has on molecular adsorption can give insight into how local environmental factors control the reactivity at the metal surface, presenting new avenues for tuning the properties of metal thin films and nanoparticles. Coupled with the knowledge of how particle size and shape modify the metal s electronic properties, these results can be used to predict how local structure and environment influence the reactivity at the metal surface. [Pg.16]

Essentially the same methanol oxidation TOFs were obtained on the different oxide supports. The Degussa P-25 titania support (90% anatase 10% rutile) was also examined, as shown in Figure 6, because it possesses very low levels of surface impurities and represents a good reference sample. The invariance of the methanol oxidation TOF with the specific phase of the titania support reveals that the oxidation reaction is controlled by a local phenomenon, the bridging V-O-Support bond, rather than long range effects, the structure of the 2 support. Thus, the phase of the oxide support does not appear to influence the molecular structure or reactivity of the surface vanadia species. [Pg.49]

The phenomena enumerated in Section 2.4 do not, of course, fully describe all the differences between chemical and electrode processes of ion radical formation. From time to time, effects are found that cannot be clearly interpreted and categorized. For instance, one paper should be mentioned. It bears the symbolic title ir- and a-Diazo Radical Cations Electronic and Molecular Structure of a Chemical Chameleon (Bally et al. 1999). In this work, diphenyldiazomethane and its 15N2, 13C, and Di0 isotopomers, as well as the CH2-CH2 bridged derivative, 5-diazo-10,ll-dihydro-5H-dibenzo[a,d]cycloheptene, were ionized via one-electron electrolytic or chemical oxidation. Both reactions were performed in the same solvent (dichloromethane). Tetra-n-butylammonium tetrafluoroborate served as the supporting salt in the electrolysis. The chemical oxidation was carried out with tris(4-bromophenyl)-or tris(2,4-dibromophenyl)ammoniumyl hexachloroantimonates. Two distinct cation radicals that corresponded to it- and a-types were observed in both types of one-electron oxidation. These electromers are depicted in Scheme 2-28 for the case of diphenyldiazomethane. [Pg.119]

The first Raman spectra of bulk metal oxide catalysts were reported in 1971 by Leroy et al. (1971), who characterized the mixed metal oxide Fe2(MoC>4)3. In subsequent years, the Raman spectra of numerous pure and mixed bulk metal oxides were reported a summary in chronological order can be found in the 2002 review by Wachs (Wachs, 2002). Bulk metal oxide phases are readily observed by Raman spectroscopy, in both the unsupported and supported forms. Investigations of the effects of moisture on the molecular structures of supported transition metal oxides have provided insights into the structural dynamics of these catalysts. It is important to know the molecular states of a catalyst as they depend on the conditions, such as the reactive environment. [Pg.72]

Supported metal oxide catalysts are a new class of catalytic materials that are excellent oxidation catalysts when redox surface sites are present. They are ideal catalysts for investigating catalytic molecular/electronic structure-activity selectivity relationships for oxidation reactions because (i) the number of catalytic active sites can be systematically controlled, which allows the determination of the number of participating catalytic active sites in the reaction, (ii) the TOP values for oxidation studies can be quantitatively determined since the number of exposed catalytic active sites can be easily determined, (iii) the oxide support can be varied to examine the effect of different types of ligand on the reaction kinetics, (iii) the molecular and electronic structures of the surface MOj, species can be spectroscopically determined under all environmental conditions for structure-activity determination and (iv) the redox surface sites can be combined with surface acid sites to examine the effect of surface Bronsted or Lewis acid sites. Such fundamental structure-activity information can provide insights and also guide the molecular engineering of advanced hydrocarbon oxidation metal oxide catalysts such as supported metal oxides, polyoxo metallates, metal oxide supported zeolites and molecular sieves, bulk mixed metal oxides and metal oxide supported clays. [Pg.496]

Liu, J., Zhao, Z., Xu, C., etal. (2010). Ce02-supported Vanadium Oxide Catalysts for Soot Oxidation The Roles of Molecular Structure and Nanometer Effect, J. Rare Earths, 28, pp. 198-204. [Pg.47]

The molecular structures of the hydrated surface metal oxides on oxide supports have been determined in recent years with various spectroscopic characterization methods (Raman [34,37,40 3], IR [43], UV-Vis [44,45], solid stateNMR [32,33], and EXAFS/XANES [46-51]). These studies found that the surface metal oxide species possess the same molecular strucmres that are present in aqueous solution at the same net pH values. The effects of vanadia surface coverage and the different oxide supports on the hydrated surface vanadia molecular structures are shown in Table 1.2. As the value of the pH at F ZC of the oxide support decreases, the hydrated surface vanadia species become more polymerized and clustered. Similarly, as the surface vanadia coverage increases, which decreases the net pH at PZC, the hydrated surface vanadia species also become more polymerized and clustered. Consequently, only the value of the net pH at PZC of a given hydrated supported metal oxide system is needed to predict the hydrated molecular structure(s) of the surface metal oxide species. [Pg.5]

Jehng, J.M., Deo, G., Weckhuysen, B.M., andWachs, I.E. Effect of water vapour on the molecular structures of supported vanadium oxide catalysts at elevated temperatures. J. Mol. Catal. A Chem. 1996,110, 41-54. [Pg.238]


See other pages where Oxide support effect molecular structure is mentioned: [Pg.306]    [Pg.293]    [Pg.21]    [Pg.184]    [Pg.115]    [Pg.29]    [Pg.312]    [Pg.241]    [Pg.663]    [Pg.779]    [Pg.610]    [Pg.185]    [Pg.29]    [Pg.105]    [Pg.576]    [Pg.376]    [Pg.234]    [Pg.166]    [Pg.241]    [Pg.790]    [Pg.168]    [Pg.184]    [Pg.219]    [Pg.309]    [Pg.55]    [Pg.127]    [Pg.26]    [Pg.245]    [Pg.255]    [Pg.74]    [Pg.135]    [Pg.417]    [Pg.94]    [Pg.144]    [Pg.91]    [Pg.213]    [Pg.241]    [Pg.431]    [Pg.208]    [Pg.374]    [Pg.244]   
See also in sourсe #XX -- [ Pg.33 , Pg.34 , Pg.38 ]




SEARCH



Molecular structure effective

Molecular support

Oxidation supports

Oxide supports

Oxides, structure

Structural support

Support effects

Support structures

Supporting structure

© 2024 chempedia.info