Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Order-disorder block copolymers

Fig. 16. Phase diagram of a mixture containing polystyrene (M = 2400) and styrene/butadiene diblock copolymer (27 % styrene, M = 28000). Liquid phases L, and Lj represent mixtures of disordered block copolymer and polystyrene. Mesophase M, consists of ordered microdomains of the block copolymer swollen with polystyrene. Mesophase Mj probably contains aggregates of block copolymer micelles within the medium of polystyrene. The features on the lower right, drawn in broken lines, are more speculative. (From Roe and Zin... Fig. 16. Phase diagram of a mixture containing polystyrene (M = 2400) and styrene/butadiene diblock copolymer (27 % styrene, M = 28000). Liquid phases L, and Lj represent mixtures of disordered block copolymer and polystyrene. Mesophase M, consists of ordered microdomains of the block copolymer swollen with polystyrene. Mesophase Mj probably contains aggregates of block copolymer micelles within the medium of polystyrene. The features on the lower right, drawn in broken lines, are more speculative. (From Roe and Zin...
Using the so-called "block copolymers (a block of Na A-monomers at one end is covalently bonded to a block of Nb B-monomers) one can also realize the analogy of order-disorder phenomena in metallic alloys with polymers one observes transitions from the disordered melt to mesophases with various types of long range order (lamellar, hexagonal, cubic, etc ). We shall not consider these phenomena here further, however... [Pg.198]

Microdomain stmcture is a consequence of microphase separation. It is associated with processability and performance of block copolymer as TPE, pressure sensitive adhesive, etc. The size of the domain decreases as temperature increases [184,185]. At processing temperature they are in a disordered state, melt viscosity becomes low with great advantage in processability. At service temperamre, they are in ordered state and the dispersed domain of plastic blocks acts as reinforcing filler for the matrix polymer [186]. This transition is a thermodynamic transition and is controlled by counterbalanced physical factors, e.g., energetics and entropy. [Pg.133]

LeiblerL., Theory of microphase separation in block copolymers. Macromolecules, 13, 1602, 1980. Eoerster S., Khandpur A.K., Zhao J., Bates E.S., Hamley I.W., Ryan A.J., and Bras W. Complex phase behavior of polyisoprene-polystyrene diblock copolymers near the order-disorder transition. Macromolecules, 21, 6922, 1994. [Pg.161]

Hashimoto T., Order disorder transition in block copolymers. Thermoplastic Elastomers A Comprehensive Review (Legge N.R., Holden G., and Schroeder H.E., eds.), Hanser Publishers, Munich, 1987. Bianchi U. and Pedemonte E., Morphology of styrene butadiene styrene copolymer. Polymer, 11, 268, 1970. [Pg.161]

Reactive compatibilization can also be accomplished by co-vulcanization at the interface of the component particles resulting in obliteration of phase boundary. For example, when cA-polybutadiene is blended with SBR (23.5% styrene), the two glass transition temperatures merge into one after vulcanization. Co-vulcanization may take place in two steps, namely generation of a block or graft copolymer during vulcanization at the phase interface and compatibilization of the components by thickening of the interface. However, this can only happen if the temperature of co-vulcanization is above the order-disorder transition and is between the upper and lower critical solution temperature (LCST) of the blend [20]. [Pg.301]

Usually the discussion of the ODT of highly asymmetric block copolymers in the strong segregation limit starts from a body-centred cubic (bcc) array of the minority phase. Phase transitions were calculated using SOFT accounting for both the translational entropy of the micelles in a disordered micelle regime and the intermicelle free energy [129]. Results indicate that the ODT occurs between ordered bcc spheres and disordered micelles. [Pg.189]

An A-B diblock copolymer is a polymer consisting of a sequence of A-type monomers chemically joined to a sequence of B-type monomers. Even a small amount of incompatibility (difference in interactions) between monomers A and monomers B can induce phase transitions. However, A-homopolymer and B-homopolymer are chemically joined in a diblock therefore a system of diblocks cannot undergo a macroscopic phase separation. Instead a number of order-disorder phase transitions take place in the system between the isotropic phase and spatially ordered phases in which A-rich and B-rich domains, of the size of a diblock copolymer, are periodically arranged in lamellar, hexagonal, body-centered cubic (bcc), and the double gyroid structures. The covalent bond joining the blocks rests at the interface between A-rich and B-rich domains. [Pg.147]

The mean-field SCFT neglects the fluctuation effects [131], which are considerably strong in the block copolymer melt near the order-disorder transition [132] (ODT). The fluctuation of the order parameter field can be included in the phase-diagram calculation as the one-loop corrections to the free-energy [37,128,133], or studied within the SCFT by analyzing stability of the ordered phases to anisotropic fluctuations [129]. The real space SCFT can also applied for a confined geometry systems [134], their dynamic development allows to study the phase-ordering kinetics [135]. [Pg.175]

Ruokolainen J, Torkkeli M, Serimaa R, Komanschek E, ten Brinke G, Ikkala O. Order-disorder transition in comblike block copolymers obtained by hydrogen bonding between homopolymers and end-functionalized oligomers poly(4-vinylpyridine)-pentadecylphenol. Mactomolecules 1997 30 2002-2007. [Pg.100]

Stepanek, P. and Lodge, T. P. (1996). Light scattering by block copolymer liquids in the disordered and ordered state. In Light scattering. Principles and development, (ed. W. Brown). Oxford University Press, Oxford. [Pg.22]

Fig. 2.5 Schematic showing the variation of inverse scattering intensity and domain spacing (as determined from SAXS or SANS) across the order-disorder transition of a block copolymer melt. The mean field transition temperature has been identified operationally as the point where, on heating, the inverse intensity crosses over to a linear dependence on T (after Sakamoto and Hashimoto 1995). Fig. 2.5 Schematic showing the variation of inverse scattering intensity and domain spacing (as determined from SAXS or SANS) across the order-disorder transition of a block copolymer melt. The mean field transition temperature has been identified operationally as the point where, on heating, the inverse intensity crosses over to a linear dependence on T (after Sakamoto and Hashimoto 1995).
Order-disorder transitions and spinodals were computed for linear multi block copolymers with differing sequence distributions by Fredrickson et al. (1992). This type of copolymer includes polyurethanes, styrene-butadiene rubber, high impact polystyrene (HIPS) and acrylonitrile-butadiene-styrene (ABS) block copolymers. Thus the theory is applicable to a broad range of industrial thermoplastic elastomers and polyurethanes. The parameter... [Pg.79]


See other pages where Order-disorder block copolymers is mentioned: [Pg.89]    [Pg.107]    [Pg.437]    [Pg.181]    [Pg.268]    [Pg.224]    [Pg.181]    [Pg.268]    [Pg.306]    [Pg.341]    [Pg.121]    [Pg.357]    [Pg.131]    [Pg.55]    [Pg.55]    [Pg.63]    [Pg.132]    [Pg.149]    [Pg.266]    [Pg.144]    [Pg.187]    [Pg.16]    [Pg.183]    [Pg.237]    [Pg.506]    [Pg.4]    [Pg.5]    [Pg.13]    [Pg.24]    [Pg.25]    [Pg.31]    [Pg.81]    [Pg.92]    [Pg.93]    [Pg.99]   
See also in sourсe #XX -- [ Pg.710 , Pg.711 , Pg.712 ]




SEARCH



Block copolymers order-disorder transitions

Copolymer disordered

Disordered/ordered

Order / Disorder

Order-disorder temperature block copolymer melt

Ordered block copolymers

Ordered disorder

Ordering-disordering

© 2024 chempedia.info