Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Orbitals Is orbital

They all have a spherical shape. They have different sizes, with the 3s-orbital > 2s-orbital > Is-orbital. (page 224)... [Pg.256]

A similar approach can be applied for the Y atom insertion into the C-H bond of alkenes and other alkanes. Our calculation by the Cl method in a 6-311-H-G(2d,2p) basis set with a complete active space for 8 electrons in 8 orbitals (Is orbital of carbon atom is frozen) predicts that the vertical S-T excitation energy in methane is around 11 eV (11.37 eV or 262 kcal/mol). Following the above approximation it is equal -2 Jch- From Eq. (9) the activation energy for the yttrium atom insertion reaction, Eq. (1) M=Y, should be 17.6 kcal/mol. This simple estimation is in a good agreement with very accurate ab initio calculations, Ea = 20.7 kcal/mol [15]. [Pg.201]

Atomic orbital Is Orbital spin density, 1(P Conformational isomer ... [Pg.306]

Also an atom, molecule, or ion that is electron deficient and which can form a co-ordinate link with an electron donor. Thus in the complex ion [Co(NH3)eP the cobalt(Ill) ion is an acceptor and the ammonia the electron donor. t-acceptors are molecules or atoms which accept electrons into n, p or d orbitals. [Pg.10]

The wave function T i oo ( = 11 / = 0, w = 0) corresponds to a spherical electronic distribution around the nucleus and is an example of an s orbital. Solutions of other wave functions may be described in terms of p and d orbitals, atomic radii Half the closest distance of approach of atoms in the structure of the elements. This is easily defined for regular structures, e.g. close-packed metals, but is less easy to define in elements with irregular structures, e.g. As. The values may differ between allo-tropes (e.g. C-C 1 -54 A in diamond and 1 -42 A in planes of graphite). Atomic radii are very different from ionic and covalent radii. [Pg.45]

An s orbital is spherically symmetrical and can contain a maximum of two electrons with opposed spins. A p orbital has a solid figure-of-eight shape there are three equivalent p orbitals for each principal quantum number they correspond to the three axes of rectangular coordinates. [Pg.152]

Jahn-TeHer effect The Jahn-Teller theorem states that, when any degenerate electronic slate contains a number of electrons such that the degenerate orbitals are not completely filled, the geometry of the species will change so as to produce non-degenerate orbitals. Particularly applied to transition metal compounds where the state is Cu(II)... [Pg.229]

The carbon atom has a share in eight electrons (Ne structure) whilst each hydrogen atom has a share in two electrons (He structure). This is a gross simplification of covalent bonding, since the actual electrons are present in molecular orbitals which occupy the whole space around the five atoms of the molecule. [Pg.415]

The co-ordination number in ionic compounds is determined by the radius ratio - a measure of the necessity to minimize cationic contacts. More subtle effects are the Jahn-Teller effect (distortions due to incomplete occupancy of degenerate orbitals) and metal-metal bonding. [Pg.416]

Using the theorem that the sufficiency condition for mathematical correctness in 3D-reconstruction is fulfilled if all planes intersecting the object have to intersect the source-trajectory at least in one point [8], it is possible to generalise Feldkamp s method. Using projection data measured after changing the sotuce-trajectory from circular to spiral focus orbit it is possible to reconstruct the sample volume in a better way with the Wang algorithm [9]. [Pg.494]

Another efficient and practical method for exact 3D-reconstruction is the Grangeat algorithm [11]. First the derivative of the three-dimensional Radon transfomi is computed from the Cone-Beam projections. Afterwards the 3D-Object is reconstructed from the derivative of the Radon transform. At present time this method is not available for spiral orbits, instead two perpendicular circular trajectories are suitable to meet the above sufficiency condition. [Pg.494]

The atomic unit (AU) of dipole moment is that of a proton and electron separated by a distance equal to the first Bohr orbit, oq. Similarly, the au of polarizability is Oq [125]. Express and o for NH3 using both the cgs/esu and SI approach. [Pg.250]

Fig. XVIII-16. A four-electron two-orbital interaction that a) has no net bonding in the free molecule but can be bonding to a metal surface if (b) the Fermi level is below the antibonding level. In the lower part of the figure, a zero-electron two-orbital situation (c) has no bonding but there can be bonding to a metal surface as in (d) if the Fermi level is above the bonding level. (From Ref. 160.)... Fig. XVIII-16. A four-electron two-orbital interaction that a) has no net bonding in the free molecule but can be bonding to a metal surface if (b) the Fermi level is below the antibonding level. In the lower part of the figure, a zero-electron two-orbital situation (c) has no bonding but there can be bonding to a metal surface as in (d) if the Fermi level is above the bonding level. (From Ref. 160.)...
We consider first some experimental observations. In general, the initial heats of adsorption on metals tend to follow a common pattern, similar for such common adsorbates as hydrogen, nitrogen, ammonia, carbon monoxide, and ethylene. The usual order of decreasing Q values is Ta > W > Cr > Fe > Ni > Rh > Cu > Au a traditional illustration may be found in Refs. 81, 84, and 165. It appears, first, that transition metals are the most active ones in chemisorption and, second, that the activity correlates with the percent of d character in the metallic bond. What appears to be involved is the ability of a metal to use d orbitals in forming an adsorption bond. An old but still illustrative example is shown in Fig. XVIII-17, for the case of ethylene hydrogenation. [Pg.715]

Fig. XVIII-18. Interaction of the a and n molecular orbitals with the Pt d band Ef is the Fermi level. (From Ref. 172.)... Fig. XVIII-18. Interaction of the a and n molecular orbitals with the Pt d band Ef is the Fermi level. (From Ref. 172.)...
In many crystals there is sufficient overlap of atomic orbitals of adjacent atoms so that each group of a given quantum state can be treated as a crystal orbital or band. Such crystals will be electrically conducting if they have a partly filled band but if the bands are all either full or empty, the conductivity will be small. Metal oxides constitute an example of this type of crystal if exactly stoichiometric, all bands are either full or empty, and there is little electrical conductivity. If, however, some excess metal is present in an oxide, it will furnish electrons to an empty band formed of the 3s or 3p orbitals of the oxygen ions, thus giving electrical conductivity. An example is ZnO, which ordinarily has excess zinc in it. [Pg.717]

Sequences such as the above allow the formulation of rate laws but do not reveal molecular details such as the nature of the transition states involved. Molecular orbital analyses can help, as in Ref. 270 it is expected, for example, that increased strength of the metal—CO bond means decreased C=0 bond strength, which should facilitate process XVIII-55. The complexity of the situation is indicated in Fig. XVIII-24, however, which shows catalytic activity to go through a maximum with increasing heat of chemisorption of CO. Temperature-programmed reaction studies show the presence of more than one kind of site [99,1(K),283], and ESDIAD data show both the location and the orientation of adsorbed CO (on Pt) to vary with coverage [284]. [Pg.732]

Since it is not possible to generate antisynnnetric combinations of products if the same spin orbital appears twice in each tenn, it follows that states which assign the same set of four quantum numbers twice cannot possibly satisfy the requirement P.j i = -ij/, so this statement of the exclusion principle is consistent with the more general symmetry requirement. An even more general statement of the exclusion principle, which can be regarded as an additional postulate of quantum mechanics, is... [Pg.30]

Although a separation of electronic and nuclear motion provides an important simplification and appealing qualitative model for chemistry, the electronic Sclirodinger equation is still fomiidable. Efforts to solve it approximately and apply these solutions to the study of spectroscopy, stmcture and chemical reactions fonn the subject of what is usually called electronic structure theory or quantum chemistry. The starting point for most calculations and the foundation of molecular orbital theory is the independent-particle approximation. [Pg.31]


See other pages where Orbitals Is orbital is mentioned: [Pg.72]    [Pg.72]    [Pg.34]    [Pg.288]    [Pg.50]    [Pg.107]    [Pg.126]    [Pg.146]    [Pg.152]    [Pg.152]    [Pg.158]    [Pg.207]    [Pg.235]    [Pg.256]    [Pg.267]    [Pg.286]    [Pg.287]    [Pg.288]    [Pg.313]    [Pg.313]    [Pg.348]    [Pg.359]    [Pg.368]    [Pg.425]    [Pg.33]    [Pg.61]    [Pg.714]    [Pg.716]    [Pg.2]    [Pg.3]    [Pg.24]    [Pg.24]    [Pg.25]    [Pg.27]    [Pg.27]    [Pg.28]    [Pg.29]    [Pg.30]    [Pg.32]   
See also in sourсe #XX -- [ Pg.527 , Pg.539 ]




SEARCH



Is orbital

© 2024 chempedia.info