Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Optical pumping quantum theory

Figure 1.3. Real-time femtosecond spectroscopy of molecules can be described in terms of optical transitions excited by ultrafast laser pulses between potential energy curves which indicate how different energy states of a molecule vary with interatomic distances. The example shown here is for the dissociation of iodine bromide (IBr). An initial pump laser excites a vertical transition from the potential curve of the lowest (ground) electronic state Vg to an excited state Vj. The fragmentation of IBr to form I + Br is described by quantum theory in terms of a wavepacket which either oscillates between the extremes of or crosses over onto the steeply repulsive potential V[ leading to dissociation, as indicated by the two arrows. These motions are monitored in the time domain by simultaneous absorption of two probe-pulse photons which, in this case, ionise the dissociating molecule. Figure 1.3. Real-time femtosecond spectroscopy of molecules can be described in terms of optical transitions excited by ultrafast laser pulses between potential energy curves which indicate how different energy states of a molecule vary with interatomic distances. The example shown here is for the dissociation of iodine bromide (IBr). An initial pump laser excites a vertical transition from the potential curve of the lowest (ground) electronic state Vg to an excited state Vj. The fragmentation of IBr to form I + Br is described by quantum theory in terms of a wavepacket which either oscillates between the extremes of or crosses over onto the steeply repulsive potential V[ leading to dissociation, as indicated by the two arrows. These motions are monitored in the time domain by simultaneous absorption of two probe-pulse photons which, in this case, ionise the dissociating molecule.
Ducloy, M., Nonlinear Effec ts in Optical Pumping of Atoms by a High-Intensity Multimode Gas Laser. Genaral Theory. Phys. Rev. A, 8 (4) p. 1844 - 1859, (1973). Auzinsli, M.P. and R.S. Ferber, Optical-Pumping of Diatomic Molecules in the Electronic Ground State — Classical and Quantum Approaches. Phvs. Rev. A, 43 (5) p. 2374 - 2386, (1991). [Pg.465]

Whilst the above is perfectly adequate for the description of processes observed with continuous-wave (cw) input, proper representation of the optical response to pulsed laser radiation requires one further modification to the theory. It is commonly thought difficult to represent pulses of light using quantum field theory indeed, it is impossible if a number state basis is employed. However by expressing the radiation as a product of coherent states with a definite phase relationship, it is relatively simple to construct a wavepacket to model pulsed laser radiation [39]. The physical basis for this approach is that pulses necessarily have a finite linewidth and therefore in fact entail a large number of radiation modes, so that for the pump radiation, it is appropriate to construct a coherent superposition... [Pg.627]

The conceptual framework for the - semiclassical simulation of ultrafast spectroscopic observables is provided by the Wigner representation of quantum mechanics [2, 3]. Specifically, for the ultrafast pump-probe spectroscopy using classical trajectories, methods based on the semiclassical limit of the Liouville-von Neumann equation for the time evolution of the vibronic density matrix have been developed [4-8]. Our approach [4,6-8] is related to the Liouville space theory of nonlinear spectroscopy developed by Mukamel et al. [9]. It is characterized by the ability to approximately describe quantum phenomena such as optical transitions by averaging over the ensemble of classical trajectories. Moreover, quantum corrections for the nuclear dynamics can be introduced in a systematic manner, e.g. in the framework of the entangled trajectory method [10,11]. Alternatively, these effects can be also accounted for in the framework of the multiple spawning method [12]. In general, trajectory-based methods require drastically less computational effort than full quantum mechanical calculations and provide physical insight in ultrafast processes. Additionally, they can be combined directly with quantum chemistry methods for the electronic structure calculations. [Pg.300]


See other pages where Optical pumping quantum theory is mentioned: [Pg.200]    [Pg.21]    [Pg.12]    [Pg.639]    [Pg.639]    [Pg.641]    [Pg.261]    [Pg.3]    [Pg.623]    [Pg.120]   
See also in sourсe #XX -- [ Pg.639 ]




SEARCH



Optical pumping

Optical pumping theory

Optically pumped

Pumps optical

Quantum optics

Quantum theory of the optical pumping

© 2024 chempedia.info