Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Optical absorption coefficient, phase transitions

Various polymorphs have been reported for SnS with band gap widths in the range 1.0-1.5 eV, depending on the preparation method. The a-SnS (herzenbergite) is the most frequently occurring phase and is a p-type semiconductor with a direct optical transition at 1.3 eV and a high absorption coefficient (> 10" cm ). The orthorhombic S-SnS phase possesses a direct gap between 1.05 and 1.09 eV. [Pg.50]

The temperature dependences of optical properties of organic conductors beyond the phase-transition region have not been investigated sufficiently so far. The quantitative temperature studies of the e-mv coupling are very difficult and possible only for some selected low-dimensional salts. It was shown [94,95] that an analysis of T dependence of the IR spectra of the salts composed of isolated dimers (TCNQ)2- makes it possible to pinpoint the main mechanisms responsible for thermal evolution of the IR spectra and changes in the absorption coefficients. Among other things it was... [Pg.258]

In equations (5)-(8), i is the molecule s moment of Inertia, v the flow velocity, K is the appropriate elastic constant, e the dielectric anisotropy, 8 is the angle between the optical field and the nematic liquid crystal director axis y the viscosity coefficient, the tensorial order parameter (for isotropic phase), the optical electric field, T the nematic-isotropic phase transition temperature, S the order parameter (for liquid-crystal phase), the thermal conductivity, a the absorption constant, pj the density, C the specific heat, B the bulk modulus, v, the velocity of sound, y the electrostrictive coefficient. Table 1 summarizes these optical nonlinearities, their magnitudes and typical relaxation time constants. Also included in Table 1 is the extraordinary large optical nonlinearity we recently observed in excited dye-molecules doped liquid... [Pg.121]

Ozin et al. 107,108) performed matrix, optical experiments that resulted in the identification of the dimers of these first-row, transition metals. For Sc and Ti (4s 3d and 4s 3d, respectively), a facile dimerization process was observed in argon. It was found that, for Sc, the atomic absorptions were blue-shifted 500-1000 cm with respect to gas-phase data, whereas the extinction coefficients for both Sc and Scj were of the same order of magnitude, a feature also deduced for Ti and Ti2. The optical transitions and tentative assignments (based on EHMO calculations) are summarized in Table I. [Pg.83]

Circular dichroism arises from the same optically active transitions responsible for the Cotton effects observed in ORD curves, but unlike ORD it is an absorption, not a dispersion, phenomenon. Hence, the CD effect is restricted to the region of the transition and can be interpreted more straightforwardly. Both ORD and CD can best be understood if one imagines the incident plane-polarized beam resolved into two in-phase circularly polarized beams whose vectors rotate in opposite directions. A difference in index of refraction between the left and right circularly polarized beams results in rotation of the transmitted plane polarized beam while differential absorption of the two circularly polarized beams results in depolarization of the transmitted beam, so that an incident plane-polarized beam whose frequency is within that of an optically active absorption band becomes both rotated and elliptically polarized upon passage through the sample. This depolarization effect is CD, and the measured parameter is (et — er), the difference in extinction coefficient between the left and right circularly polarized beams. The data is usually recorded as the specific ellipticity, defined as ... [Pg.270]


See other pages where Optical absorption coefficient, phase transitions is mentioned: [Pg.939]    [Pg.939]    [Pg.531]    [Pg.561]    [Pg.195]    [Pg.71]    [Pg.195]    [Pg.668]    [Pg.36]    [Pg.22]    [Pg.171]    [Pg.112]    [Pg.142]    [Pg.217]    [Pg.74]    [Pg.92]    [Pg.133]   
See also in sourсe #XX -- [ Pg.319 ]

See also in sourсe #XX -- [ Pg.319 ]




SEARCH



Absorption coefficient

Absorption coefficient coefficients

Absorption phase

Absorption transitions

Optical absorption

Optical absorption coefficient

Optical absorption coefficient, phase

Optical phase

© 2024 chempedia.info