Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Olefin copolymerizations with alkylaluminum

Olefin Polymerizations and Copolymerizations with Alkylaluminum-Cocatalyst Systems... [Pg.304]

Tertiary amine-functionalized olefins are not difficult to polymerize and copolymerize with group IV catalysts, provided that sufficient steric hindrance is present around the nitrogen atom. Amines of sufficient bulkiness, including diisopropyl and diphenyl derivatives, can be polymerized without the necessity of protection by Lewis-acid complexation. Smaller monomers (such as dimethyl and diethylamines) can be polymerized if 1 equiv of a proper alkylaluminum protecting group is used (vide infra). However, if the amine functionality is too near to the double bond, the additional steric bulk provided by the aluminum species may actually inhibit monomer coordination and polymerization. [Pg.168]

F. W. Billmeyer. The free-radical polymerization of methyl methacrylate, acrylonitrile, and other polymer monomers can be accelerated by adding Lewis acids, like zinc chloride or alkylaluminum chloride. The polar monomer forms a complex with the Lewis acid and becomes more electron accepting. In the presence of a nonpolar olefin or conjugated diene, the complexed polar monomer transfers its charge and copolymerizes readily, as described by N. G. Gaylord and A. Takahashi. [Pg.8]

As previously discussed, the copolymers produced in the zinc chloride-free radical system are not necessarily random copolymers but are probably the result of the copolymerization of the acrylonitrile-complexed acrylonitrile complex with the olefin-complexed acrylonitrile complex. Further, the olefin-alkylaluminum halide complexed acrylonitrile complex only differs from the olefin—zinc chloride complexed acrylonitrile complex in degree rather than in kind—i.e., the former is an unstable charge transfer complex capable of spontaneous uncoupling of the diradical system followed by intermolecular diradical coupling, while the latter is a stable charge transfer complex requiring radical attack to uncouple the diradical system. [Pg.133]


See other pages where Olefin copolymerizations with alkylaluminum is mentioned: [Pg.88]    [Pg.166]    [Pg.375]    [Pg.81]    [Pg.289]   
See also in sourсe #XX -- [ Pg.287 ]




SEARCH



1- Olefins, copolymerization

Alkylaluminum

Alkylaluminums

Olefin copolymerizations with

With Olefins

© 2024 chempedia.info