Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Shear stiffness octahedral

The glide planes on which dislocations move in the diamond and zincblende crystals are the octahedral (111) planes. The covalent bonds lie perpendicular to these planes. Therefore, the elastic shear stiffnesses of the covalent bonds [Pg.69]


A plot of them (Figure 5.6) shows that they are proportional to the bond moduli. Thus the bond moduli are fundamental physical parameters which measure shear stiffness, and vice versa. Also, it may be concluded that hardness (and dislocation mobility) depends on the octahedral shear stiffnesses of this class of crystals (see also Gilman, 1973). [Pg.71]

Figure 5.6 Correlation of octahedral shear stiffnesses with bond moduli for Group IV crystals. The octahedral stiffnesses measure the elastic shear resistances of the covalent bonds across the (111) planes. Figure 5.6 Correlation of octahedral shear stiffnesses with bond moduli for Group IV crystals. The octahedral stiffnesses measure the elastic shear resistances of the covalent bonds across the (111) planes.
The Ni octahedra derive their stability from the interactions of s, p, and d electron orbitals to form octahedral sp3d2 hybrids. When these are sheared by dislocation motion this strong bonding is destroyed, and the octahedral symmetry is lost. Therefore, the overall (0°K) energy barrier to dislocation motion is about COCi/47r where = octahedral shear stiffness = [3C44 (Cu - Ci2)]/ [4C44 + (Cu - C12)] = 50.8 GPa (Prikhodko et al., 1998), and the barrier = 4.04 GPa. The octahedral shear stiffness is small compared with the primary stiffnesses C44 = 118 GPa, and (Cn - C12)/2 = 79 GPa. Thus elastic as well as plastic shear is easier on this plane than on either the (100), or the (110) planes. [Pg.109]

The Group IV elements also show a linear correlation of their octahedral shear moduli, C44(lll) with chemical hardness density (Eg/2Vm).This modulus is for for shear strains on the (111) planes. It is a measure of the shear stiffnesses of the covalent bonds. The (111) planes lie normal to the bonds that connect the atoms in the diamond (or zinc blende) structure. In terms of the three standard moduli for cubic symmetry (Cn, Q2, and C44), the octahedral shear modulus is given by C44(lll) = 3CV1 + [4C44/(Cn - Ci2)]. Since the (111) planes have three-fold symmetry, they have only one shear modulus. The bonds across the octahedral planes have high resistance to shear which probably results from electron correlation in the bonds (Gilman, 2002). [Pg.194]


See other pages where Shear stiffness octahedral is mentioned: [Pg.69]    [Pg.69]    [Pg.69]    [Pg.69]   
See also in sourсe #XX -- [ Pg.69 , Pg.70 , Pg.109 ]




SEARCH



Shear stiffness

Stiff Stiffness

Stiffness

© 2024 chempedia.info