Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Octahedral shear moduli

Physical hardness can be defined to be proportional, and sometimes equal, to the chemical hardness (Parr and Yang, 1989). The relationship between the two types of hardness depends on the type of chemical bonding. For simple metals, where the bonding is nonlocal, the bulk modulus is proportional to the chemical hardness density. The same is true for non-local ionic bonding. However, for covalent crystals, where the bonding is local, the bulk moduli may be less appropriate measures of stability than the octahedral shear moduli. In this case, it is also found that the indentation hardness—and therefore the Mohs scratch hardness—are monotonic functions of the chemical hardness density. [Pg.189]

The Group IV elements also show a linear correlation of their octahedral shear moduli, C44(lll) with chemical hardness density (Eg/2Vm).This modulus is for for shear strains on the (111) planes. It is a measure of the shear stiffnesses of the covalent bonds. The (111) planes lie normal to the bonds that connect the atoms in the diamond (or zinc blende) structure. In terms of the three standard moduli for cubic symmetry (Cn, Q2, and C44), the octahedral shear modulus is given by C44(lll) = 3CV1 + [4C44/(Cn - Ci2)]. Since the (111) planes have three-fold symmetry, they have only one shear modulus. The bonds across the octahedral planes have high resistance to shear which probably results from electron correlation in the bonds (Gilman, 2002). [Pg.194]

It is shown that the stabilities of solids can be related to Parr s physical hardness parameter for solids, and that this is proportional to Pearson s chemical hardness parameter for molecules. For sp-bonded metals, the bulk moduli correlate with the chemical hardness density (CffD), and for covalently bonded crystals, the octahedral shear moduli correlate with CHD. By analogy with molecules, the chemical hardness is related to the gap in the spectrum of bonding energies. This is verified for the Group IV elements and the isoelec-tronic III-V compounds. Since polarization requires excitation of the valence electrons, polarizability is related to band-gaps, and thence to chemical hardness and elastic moduli. Another measure of stability is indentation hardness, and it is shown that this correlates linearly with reciprocal polarizability. Finally, it is shown that theoretical values of critical transformation pressures correlate linearly with indentation hardness numbers, so the latter are a good measure of phase stability. [Pg.196]


See other pages where Octahedral shear moduli is mentioned: [Pg.203]    [Pg.215]   
See also in sourсe #XX -- [ Pg.194 ]




SEARCH



Shear modulus

© 2024 chempedia.info