Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Numbering, potential energy

The density of dislocations is usually stated in terms of the number of dislocation lines intersecting unit area in the crystal it ranges from 10 cm for good crystals to 10 cm" in cold-worked metals. Thus, dislocations are separated by 10 -10 A, or every crystal grain larger than about 100 A will have dislocations on its surface one surface atom in a thousand is apt to be near a dislocation. By elastic theory, the increased potential energy of the lattice near... [Pg.276]

A number of different experimental methods may be used to energize the unimolecular reactant A. For example, energization can take place by the potential energy release in chemical reaction, i.e. [Pg.1007]

In addition to the dependence of the intennolecular potential energy surface on monomer vibrational level, the red-shifting of the monomer absorption as a fiinction of the number of rare gas atoms in the cluster has been studied. The band origin for the Vppp = 1 -t— 0 vibration in a series of clusters Ar -HF, with 0 < n < 5, was measured and compared to the HF vibrational frequency in an Ar matrix (n = oo). The monomer vibrational frequency Vp p red shifts monotonically, but highly nonlinearly, towards the matrix value as sequential Ar atoms are added. Indeed, roughly 50% of the shift is already accounted for by n = 3. [Pg.1169]

Figure B2.3.10. Potential energy eiirves [42] of the ground X and exeited A eleetronie states of the hydroxyl radieal. Several vibrational levels are explieitly drawn in eaeh eleetronie state. One vibrational transition is explieitly indieated, and the upper and lower vibrational wavefiinetions are plotted. The upper and lower state vibrational quantum numbers are denoted V and v", respeetively. Also shown is one of the three repulsive potential energy eurves whieh eorrelate with the ground 0( P) + H dissoeiation asymptote. These eause predissoeiation of the higher rotational and vibrational levels of the A state. Figure B2.3.10. Potential energy eiirves [42] of the ground X and exeited A eleetronie states of the hydroxyl radieal. Several vibrational levels are explieitly drawn in eaeh eleetronie state. One vibrational transition is explieitly indieated, and the upper and lower vibrational wavefiinetions are plotted. The upper and lower state vibrational quantum numbers are denoted V and v", respeetively. Also shown is one of the three repulsive potential energy eurves whieh eorrelate with the ground 0( P) + H dissoeiation asymptote. These eause predissoeiation of the higher rotational and vibrational levels of the A state.
Over the next few years, both the mid-infrared and the far-infrared spectra for Ar-HF and Ar-HCl were extended to numerous other bands and to other isotopic species (most importantly those containing deuterium). In 1992, Hutson [18, 39] combined all the available spectroscopic data to produce definitive potential energy surfaces that included both the angle dependence and the dependence on the HF/HCl monomer vibrational quantum number v... [Pg.2448]

The multiple spawning method described in Section IV.C has been applied to a number of photochemical systems using analytic potential energy surfaces. As well as small scattering systems [36,218], the large retinal molecule has been treated [243,244]. It has also been applied as a direct dynamics method. [Pg.306]

Figure 3. Low-energy vibronic spectrum in a. 11 electronic state of a linear triatomic molecule, computed for various values of the Renner parameter e and spin-orbit constant Aso (in cm ). The spectrum shown in the center of figure (e = —0.17, A o = —37cm ) corresponds to the A TT state of NCN [28,29]. The zero on the energy scale represents the minimum of the potential energy surface. Solid lines A = 0 vibronic levels dashed lines K = levels dash-dotted lines K = 1 levels dotted lines = 3 levels. Spin-vibronic levels are denoted by the value of the corresponding quantum number P P = Af - - E note that E is in this case spin quantum number),... Figure 3. Low-energy vibronic spectrum in a. 11 electronic state of a linear triatomic molecule, computed for various values of the Renner parameter e and spin-orbit constant Aso (in cm ). The spectrum shown in the center of figure (e = —0.17, A o = —37cm ) corresponds to the A TT state of NCN [28,29]. The zero on the energy scale represents the minimum of the potential energy surface. Solid lines A = 0 vibronic levels dashed lines K = levels dash-dotted lines K = 1 levels dotted lines = 3 levels. Spin-vibronic levels are denoted by the value of the corresponding quantum number P P = Af - - E note that E is in this case spin quantum number),...
HCR and co-workers carried out a number of studies by employing 3D potential energy surfaces calculated by means of highly sophisticated ab initio approaches [88,91-101]. The results of these computations are in impressive agreement with the corresponding experimental findings. The discrepancies in the order of 100 wavenumbers, as in early ab initio studies [16,17], have been reduced in the HCR studies to only a few wavenumbers. In conclusion of their paper on the ( H ) system of NH2, Gabriel et al. state We believe... [Pg.514]

For vei y small vibronic coupling, the quadratic terms in the power series expansion of the electronic Hamiltonian in normal coordinates (see Appendix E) may be considered to be negligible, and hence the potential energy surface has rotational symmetry but shows no separate minima at the bottom of the moat. In this case, the pair of vibronic levels Aj and A2 in < 3 become degenerate by accident, and the D3/, quantum numbers (vi,V2,/2) may be used to label the vibronic levels of the X3 molecule. When the coupling of the... [Pg.591]

For molecules with an even number of electrons, the spin function has only single-valued representations just as the spatial wave function. For these molecules, any degenerate spin-orbit state is unstable in the symmetric conformation since there is always a nontotally symmetric normal coordinate along which the potential energy depends linearly. For example, for an - state of a C3 molecule, the spin function has species da and E that upon... [Pg.603]


See other pages where Numbering, potential energy is mentioned: [Pg.16]    [Pg.17]    [Pg.35]    [Pg.178]    [Pg.250]    [Pg.405]    [Pg.606]    [Pg.870]    [Pg.876]    [Pg.907]    [Pg.1153]    [Pg.2059]    [Pg.2336]    [Pg.2354]    [Pg.2445]    [Pg.2450]    [Pg.2885]    [Pg.3013]    [Pg.32]    [Pg.58]    [Pg.81]    [Pg.100]    [Pg.129]    [Pg.180]    [Pg.221]    [Pg.221]    [Pg.222]    [Pg.400]    [Pg.490]    [Pg.512]    [Pg.559]    [Pg.591]    [Pg.595]    [Pg.597]    [Pg.602]    [Pg.770]    [Pg.771]   


SEARCH



Energy derivatives, electron number chemical potential

Energy derivatives, electron number ionization potential

© 2024 chempedia.info