Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Phase-sensitive nonlinear microscopy

Q Imaging with Phase-Sensitive Narrowband Nonlinear Microscopy... [Pg.213]

In this chapter we explore several aspects of interferometric nonlinear microscopy. Our discussion is limited to methods that employ narrowband laser excitation i.e., interferences in the spectral domain are beyond the scope of this chapter. Phase-controlled spectral interferometry has been used extensively in broadband CARS microspectroscopy (Cui et al. 2006 Dudovich et al. 2002 Kee et al. 2006 Lim et al. 2005 Marks and Boppart 2004 Oron et al. 2003 Vacano et al. 2006), in addition to several applications in SHG (Tang et al. 2006) and two-photon excited fluorescence microscopy (Ando et al. 2002 Chuntonov et al. 2008 Dudovich et al. 2001 Tang et al. 2006). Here, we focus on interferences in the temporal and spatial domains for the purpose of generating new contrast mechanisms in the nonlinear imaging microscope. Special emphasis is given to the CARS technique, because it is sensitive to the phase response of the sample caused by the presence of spectroscopic resonances. [Pg.215]

We first review the essentials of the phase distribution of the electric fields at the focus of a high numerical aperture lens in Section II. After discussing the phase properties of the emitted signal, in Section HI we zoom in on how the information carried by the emitted held can be detected with phase-sensitive detection methods. Interferometric CARS imaging is presented as a useful technique for background suppression and signal enhancement. In Section IV, the principles of spatial interferometry in coherent microscopy are laid out and applications are discussed. The influence of phase distortions in turbid samples on phase-sensitive nonlinear microscopy is considered in Section V. Finally, in Section VI, we conclude this chapter with a brief discussion on the utility of phase-sensitive approaches to coherent microscopy. [Pg.215]

In nonlinear interferometry, a similar scheme can be used. What makes interferometry attractive to nonlinear coherent microscopy is the last term of Equation (9.5). First, this term is not sensitive to the intensity of each of the fields, but to the product of the actual field amplitudes. Moreover, direct information on the phase difference between... [Pg.220]

In condensed-phase CARS, the effects of the nonresonant susceptibility x(3)nr are most profound when a sample with weak Raman modes is embedded in a nonlinear medium. The nonresonant background of the latter can be easily comparable to or larger than the resonant contribution from the sample of interest. This is a situation commonly encountered in biological applications of CARS microscopy. Depending on the experimental situation, the CARS detection sensitivity to weak resonances can then be restricted either by the nonresonant background or by the photon shot-noise [62]. To maximize either the relative or the absolute CARS intensity, nonresonant background suppression schemes [44, 60, 61, 63, 64] and optical heterodyne detection (OHD) techniques [65-67] have been developed during recent years. [Pg.122]


See other pages where Phase-sensitive nonlinear microscopy is mentioned: [Pg.112]    [Pg.140]    [Pg.146]    [Pg.1124]    [Pg.204]    [Pg.222]    [Pg.240]    [Pg.119]    [Pg.639]    [Pg.964]    [Pg.15]   


SEARCH



Nonlinear microscopy

Nonlinearity sensitivity

Phase sensitive

© 2024 chempedia.info