Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Nonequilibrium statistical mechanics hydrodynamics

The plan of this chapter is the following. Section II gives a summary of the phenomenology of irreversible processes and set up the stage for the results of nonequilibrium statistical mechanics to follow. In Section III, it is explained that time asymmetry is compatible with microreversibility. In Section IV, the concept of Pollicott-Ruelle resonance is presented and shown to break the time-reversal symmetry in the statistical description of the time evolution of nonequilibrium relaxation toward the state of thermodynamic equilibrium. This concept is applied in Section V to the construction of the hydrodynamic modes of diffusion at the microscopic level of description in the phase space of Newton s equations. This framework allows us to derive ab initio entropy production as shown in Section VI. In Section VII, the concept of Pollicott-Ruelle resonance is also used to obtain the different transport coefficients, as well as the rates of various kinetic processes in the framework of the escape-rate theory. The time asymmetry in the dynamical randomness of nonequilibrium systems and the fluctuation theorem for the currents are presented in Section VIII. Conclusions and perspectives in biology are discussed in Section IX. [Pg.85]

A major preoccupation of nonequilibrium statistical mechanics is to justify the existence of the hydrodynamic modes from the microscopic Hamiltonian dynamics. Boltzmann equation is based on approximations valid for dilute fluids such as the Stosszahlansatz. In the context of Boltzmann s theory, the concept of hydrodynamic modes has a limited validity because of this approximation. We may wonder if they can be justified directly from the microscopic dynamics without any approximation. If this were the case, this would be great progress... [Pg.88]

A major preoccupation in nonequilibrium statistical mechanics is to derive hydrodynamics and nonequilibrium thermodynamics from the microscopic Hamiltonian dynamics of the particles composing matter. The positions raYl= and momenta PaY i= of these particles obey Newton s equations or, equivalently, Hamilton s equations ... [Pg.93]

Introduction.—Statistical physics deals with the relation between the macroscopic laws that describe the internal state of a system and the dynamics of the interactions of its microscopic constituents. The derivation of the nonequilibrium macroscopic laws, such as those of hydrodynamics, from the microscopic laws has not been developed as generally as in the equilibrium case (the derivation of thermodynamic relations by equilibrium statistical mechanics). The microscopic analysis of nonequilibrium phenomena, however, has achieved a considerable degree of success for the particular case of dilute gases. In this case, the kinetic theory, or transport theory, allows one to relate the transport of matter or of energy, for example (as in diffusion, or heat flow, respectively), to the mechanics of the molecules that make up the system. [Pg.1]

Perhaps the best starting point in a review of the nonequilibrium field, and certainly the work that most directly influenced the present theory, is Onsager s celebrated 1931 paper on the reciprocal relations [10]. This showed that the symmetry of the linear hydrodynamic transport matrix was a consequence of the time reversibility of Hamilton s equations of motion. This is an early example of the overlap between macroscopic thermodynamics and microscopic statistical mechanics. The consequences of time reversibility play an essential role in the present nonequilibrium theory, and in various fluctuation and work theorems to be discussed shortly. [Pg.4]

A wonderful article on random walks that gives a broad coverage of this important subject is On the wonderful world of random walks by E. W. Montroll and M. F. Shlesinger, in Studies in Statistical Mechanics, Volume XI, Elsevier Science Publishers, Amsterdam The Netherlands, 1984. This book goes under the title Nonequilibrium Phenomena II From Stochastics to Hydrodynamics, edited by J. L. Lebowitz and E. W. Montroll. [Pg.358]

The goal of extending classical thermostatics to irreversible problems with reference to the rates of the physical processes is as old as thermodynamics itself. This task has been attempted at different levels. Description of nonequilibrium systems at the hydrodynamic level provides essentially a macroscopic picture. Thus, these approaches are unable to predict thermophysical constants from the properties of individual particles in fact, these theories must be provided with the transport coefficients in order to be implemented. Microscopic kinetic theories beginning with the Boltzmann equation attempt to explain the observed macroscopic properties in terms of the dynamics of simplified particles (typically hard spheres). For higher densities kinetic theories acquire enormous complexity which largely restricts them to only qualitative and approximate results. For realistic cases one must turn to atomistic computer simulations. This is particularly useful for complicated molecular systems such as polymer melts where there is little hope that simple statistical mechanical theories can provide accurate, quantitative descriptions of their behavior. [Pg.391]


See other pages where Nonequilibrium statistical mechanics hydrodynamics is mentioned: [Pg.254]    [Pg.471]    [Pg.332]    [Pg.379]   
See also in sourсe #XX -- [ Pg.86 , Pg.87 , Pg.88 ]




SEARCH



Nonequilibrium

Nonequilibrium statistical mechanics

Statistical mechanics hydrodynamics

Statistical nonequilibrium

© 2024 chempedia.info