Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Niobium coordination numbers

An increase in the Me F ratio leads to an increase in the acidity of the initial solution, whereas the acidity of alkali metals increases according to their molecular weight, from Li to Cs. Therefore the additives of fluorides of alkali metals having higher atomic weight provide formation of complex fluorides with lower coordination number of tantalum or niobium. [Pg.17]

The ratio between the anionic and cationic radii leads to coordination numbers, the lowest of which is 6, which correspond to a octahedral polyhedron of anions around a central cation [135]. In this case, the compound structure type depends on the ratio of total number of anions and cations. The total number of anions (X) is calculated by summing up the number of oxygen (O) ions and of fluorine (F) ions X=0+F, while the total number of cations (Me) is the number of tantalum ions, niobium ions and other similar cations. [Pg.59]

Since the coordination number of tantalum or niobium in fluoride and oxyfluoride compounds cannot be lower than 6 due to steric limitations, further decrease of the X Me ratio (lower than 6) leads to linkage between complex ions in order to achieve coordination saturation by sharing of ligands between different central atoms of the complexes. The resulting compounds have X Me ratios between 6 and 4, and form crystals with a chain-type structure. [Pg.82]

The lowest coordination number of tantalum or niobium permitted by crystal chemistry formalism is 6, which corresponds to an octahedral configuration. X Me ratios that equal 3, 2 or 1 can, therefore, be obtained by corresponding substitutions in the cationic sub-lattice. A condition for such substitution is no doubt steric similarity between the second cation and the tantalum or niobium ion so as to enable its replacement in the octahedral polyhedron. In such cases, the structure of the compound consists of oxyfluoride octahedrons that are linked by their vertexes, sides or faces, according to the compound type, MeX3, MeX2 or MeX respectively. Table 37 lists compounds that have a coordination-type structure [259-261]. [Pg.109]

X Me Second cation present, with coordination number greater than 6 (second cation s ionic radius > tantalum/niobium ionic radius) Only cations that can fit into/occupy octahedral voids are present (second cation s ionic radius tantalum/niobium ionic radius)... [Pg.120]

Three conceptual steps can be discerned in the definition of the ionic structure of fluoride melts containing tantalum or niobium. Based on the very first thermodynamic calculations and melting diagram analysis, it was initially believed that the coordination numbers of tantalum and niobium, in a molten system containing alkali metal fluorides, increase up to 8. [Pg.136]

S Tantalum and niobium are present in the crystal structure in the form of complex ions. The lowest coordination number, 6, corresponds to the formation of slightly distorted octahedrons. The linking and packaging of the octahedrons depends on the X Me ratio, where X is the total number of oxygen and fluorine atoms, and Me is the total number of tantalum or niobium ions as well as other metals that can replace tantalum or niobium in the octahedral polyhedron. The crystal structure type can be defined based on the X Me ratio, as follows ... [Pg.339]

Another type of notation, introduced by P. Niggli, uses fractional numbers in the chemical formula. The formula Ti06/, for instance means that every titanium atom is surrounded by 6 O atoms, each of which is coordinated to 3 Ti atoms. Another example is NbOCl3 = NbC C C /i which has coordination number 6 for the niobium atom (= 2 -)- 2 + 2 = sum of the numerators), coordination number 2 for the O atom and coordination numbers 2 and 1 for the two different kinds of Cl atoms (cf. Fig. 16.11, p. 176). [Pg.7]

Oxide ratio, 18 815 Oxides, 16 598 acidic, 22 190-191 bond strengths and coordination numbers of, 22 570t diorganotin, 24 819 glass electrodes and, 14 28 gold, 22 707 iron, 14 541-542 lead, 14 786-788 manganese, 15 581-592 nickel, 27 106-108 niobium, 27 151 plutonium, 29 688-689 in perovskite-type electronic ceramics, 14 102... [Pg.662]


See other pages where Niobium coordination numbers is mentioned: [Pg.994]    [Pg.995]    [Pg.20]    [Pg.116]    [Pg.120]    [Pg.146]    [Pg.194]    [Pg.201]    [Pg.262]    [Pg.325]    [Pg.340]    [Pg.177]    [Pg.98]    [Pg.67]    [Pg.255]    [Pg.691]    [Pg.260]    [Pg.67]    [Pg.588]    [Pg.616]    [Pg.20]    [Pg.116]    [Pg.120]    [Pg.146]    [Pg.193]    [Pg.201]    [Pg.262]    [Pg.325]    [Pg.340]    [Pg.163]   
See also in sourсe #XX -- [ Pg.588 ]

See also in sourсe #XX -- [ Pg.3 , Pg.588 ]




SEARCH



Coordination number

Niobium complexes coordination numbers

© 2024 chempedia.info