Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Nicotinamide kynureninase

Tryptophan is an essential amino acid involved in synthesis of several important compounds. Nicotinic acid (amide), a vitamin required in the synthesis of NAD+ and NADP+, can be synthesized from tryptophan (Figure 17-24). About 60 mg of tryptophan can give rise to 1 mg of nicotinamide. The synthesis begins with conversion of tryptophan to N-formylkynurenine by tryptophan pyrrolase, an inducible iron-porphyrin enzyme of liver. N-Formylkynurenine is converted to kynurenine by removal of formate, which enters the one-carbon pool. Kynurenine is hydroxylated to 3-hydroxykynurenine, which is converted to 3-hydroxyanthranilate, catalyzed by kynureninase, a pyridoxal phosphate-dependent enzyme. 3-Hydroxyanthranilate is then converted by a series of reactions to nicotinamide ribotide, the immedi-... [Pg.361]

Figure 2 NAD metabolism. Tip = tryptophan, 3-HK = 3-hydroxykynurenine, 3-HA = 3-hydroxyanthranilic acid, ACMS = a-amino-P-carboxymuconate- -semialdehyde, AMS = a-aminomuconate- -semialdehyde, NaMN = nicotinic acid mononucleotide, NMN = nicotinamide mononucleotide, NaAD = nicotinic acid adenine dinucleotide. For other abbreviations, see Figure 1. (1) tryptophan oxygenase [EC 1.13.11.11], (2) formy-dase [EC 3.5.1.9], (3) kynurenine 3-hydroxylase [EC 1.14.13.9], (4) kynureninase [EC 3.7.1.3], (5) 3-hydroxyanthranilic acid oxygenase [EC 1.13.11.6], (6) nonenzymatic, (7) aminocarboxymuconate-semialdehyde decarboxylase [EC 4.1.1.45], (8) quinolinate phos-phoribosyltransferase [EC 2.4.2.19], (9) NaMN adenylyltransferase [EC 2.7.2.18], (10) NAD synthetase [EC 6.3.5.1], (11) NAD kinase [EC 2.7.1.23], (12) NAD" glycohydro-lase [EC 3.2.2.5], (13) nicotinamide methyltransferase [EC 2.2.1.1], (14) 2-Py-forming MNA oxidase [EC 1.2.3.1], (15) 4-Py-forming MNA oxidase [EC number not given], (16) nicotinamide phosphoribosyltransferase [EC 2.4.2.12], (17) NMN adenylytransferase [EC 2.7.71], (18) nicotinate phosphoribosyltransferase [EC 2.4.2.11], (19) nicotinate methyltransferase [EC 2.7.1.7], and nicotinamidase [EC 3.5.1.19]. Solid line, biosynthesis dotted line, catabolism. Figure 2 NAD metabolism. Tip = tryptophan, 3-HK = 3-hydroxykynurenine, 3-HA = 3-hydroxyanthranilic acid, ACMS = a-amino-P-carboxymuconate- -semialdehyde, AMS = a-aminomuconate- -semialdehyde, NaMN = nicotinic acid mononucleotide, NMN = nicotinamide mononucleotide, NaAD = nicotinic acid adenine dinucleotide. For other abbreviations, see Figure 1. (1) tryptophan oxygenase [EC 1.13.11.11], (2) formy-dase [EC 3.5.1.9], (3) kynurenine 3-hydroxylase [EC 1.14.13.9], (4) kynureninase [EC 3.7.1.3], (5) 3-hydroxyanthranilic acid oxygenase [EC 1.13.11.6], (6) nonenzymatic, (7) aminocarboxymuconate-semialdehyde decarboxylase [EC 4.1.1.45], (8) quinolinate phos-phoribosyltransferase [EC 2.4.2.19], (9) NaMN adenylyltransferase [EC 2.7.2.18], (10) NAD synthetase [EC 6.3.5.1], (11) NAD kinase [EC 2.7.1.23], (12) NAD" glycohydro-lase [EC 3.2.2.5], (13) nicotinamide methyltransferase [EC 2.2.1.1], (14) 2-Py-forming MNA oxidase [EC 1.2.3.1], (15) 4-Py-forming MNA oxidase [EC number not given], (16) nicotinamide phosphoribosyltransferase [EC 2.4.2.12], (17) NMN adenylytransferase [EC 2.7.71], (18) nicotinate phosphoribosyltransferase [EC 2.4.2.11], (19) nicotinate methyltransferase [EC 2.7.1.7], and nicotinamidase [EC 3.5.1.19]. Solid line, biosynthesis dotted line, catabolism.

See other pages where Nicotinamide kynureninase is mentioned: [Pg.145]   


SEARCH



Kynureninase

© 2024 chempedia.info