Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Neurotransmitters cortical activation

There is some evidence that receptors for other neurotransmitters on 5-HT nerve terminals also modify release of 5-HT. These include nicotinic receptors (increase release from striatal synaptosomes), a2A-adrenoceptors (depress cortical release) and H3-receptors (cortical depression). Because changes in 5-HT release on activation of these receptors is evident in synaptosomal preparations, it is likely that these are true heteroceptors . [Pg.194]

The more synchronised the activity of the cortical neurons, the greater the summation of currents and the larger and slower the EEG wave, as in the sleep pattern (Fig. 22.4). While there are some dissociations between EEG pattern and behavioural states, the EEG offers one way of determining experimentally the pathways (and neurotransmitters) that control arousal and sleep, and can be regarded as an important objective measurement of the cortical correlates of sleep and waking. [Pg.483]

The amino acid glutamate is the most widely used excitatory neurotransmitter in the central nervous system of mammals. Glutamate is the primary neurotransmitter used by the vast majority of reticular formation, thalamic and cortical neurons, which play a crucial role in the generation of the characteristic electrical activity as recorded in the electroencephalogram (for details see Steriade McCarley (2005)). The activity of these neurons is tightly regulated by the other neurotransmitters described in this chapter. [Pg.43]

ACh regulates the cortical arousal characteristic of both REM sleep and wakefulness (Semba, 1991, 2000 Sarter Bruno, 1997, 2000). Medial regions of the pontine reticular formation (Figs. 5.2 and 5.7) contribute to regulating both the state of REM sleep and the trait of EEG activation. Within the medial pontine reticular formation, presynaptic cholinergic terminals (Fig. 5.1) that release ACh also are endowed with muscarinic cholinergic receptors (Roth et al, 1996). Autoreceptors are defined as presynaptic receptors that bind the neurotransmitter that is released from the presynaptic terminal (Kalsner, 1990). Autoreceptors provide feedback modulation of transmitter release. Autoreceptor activation... [Pg.121]

The basal forebrain is an important way station in the activation of the cerebral cortex from the reticular activating system. AMPA and NMDA injections into the basal forebrain increase wakefulness and reduce sleep (Cape Jones, 2000 Manfridi et al, 1999), effects that are blocked by AMPA and NMDA receptor antagonists (Manfridi et al, 1999). The excitatory cortical projections of the basal forebrain have long been considered purely cholinergic, but many basal forebrain neurons that project to the cortex are now known to contain Glu, which may function as a co-transmitter or even as the primary excitatory neurotransmitter (Manns et al, 2001). The basal forebrain also affects vigilance via synapses to HCT cells in the lateral hypothalamus some of these synapses are glutamatergic (Henny Jones, 2006). [Pg.227]

Intracerebroventricular infusion of CST-14 dramatically increases the amount of slow wave activity in rats, at the expense of wakefulness. The mechanism by which CST-14 enhances cortical synchronization has been established through the interaction of CST-14 with acetylcholine, a neurotransmitter known to be involved in the maintenance of cortical desynchronization. Application of acetylcholine (ACh) in the anesthetized animal increases fast activity, and this effect is blocked with the simultaneous addition of CST-14. These data suggest that CST-14 increases slow wave sleep by antagonizing the effects of ACh on cortical excitability. In addition to this mechanism, cortistatin may enhance cortical... [Pg.392]

The state of conscious awareness, with orientation of self in time and space, depends on hnely tuned and accurately co-ordinated activity in multiple neuronal networks in the brain (Park Young, 1994). Such activity involves parallel processing in many cortical and subcortical pathways including arousal and memory systems (Chapters 3 and 4) and systems involved in mood (Chapters 5 and 18) and utilises an orchestra of many neurotransmitters. The whole ensemble appears to be synchronised by high frequency (40+ Hz) oscillatory electrical activity which binds the component parts together (Llinas et ah, 1998 Tallon-Baudry Bertrand, 1999). [Pg.181]


See other pages where Neurotransmitters cortical activation is mentioned: [Pg.145]    [Pg.349]    [Pg.392]    [Pg.127]    [Pg.328]    [Pg.546]    [Pg.196]    [Pg.525]    [Pg.147]    [Pg.147]    [Pg.4]    [Pg.174]    [Pg.380]    [Pg.462]    [Pg.489]    [Pg.163]    [Pg.91]    [Pg.245]    [Pg.17]    [Pg.89]    [Pg.90]    [Pg.145]    [Pg.156]    [Pg.28]    [Pg.53]    [Pg.236]    [Pg.268]    [Pg.118]    [Pg.366]    [Pg.63]    [Pg.167]    [Pg.131]    [Pg.401]    [Pg.432]    [Pg.288]    [Pg.53]    [Pg.626]    [Pg.28]    [Pg.36]    [Pg.196]    [Pg.18]    [Pg.28]    [Pg.515]    [Pg.516]   


SEARCH



Cortical

Neurotransmitter activity

© 2024 chempedia.info