Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Nerve fibers, local anesthetics affecting

Peripheral nerve functions are not affected equally by local anesthetics. Loss of sympathetic function usually is followed by loss of temperature sensation sensation to pinprick, touch, and deep pressure and last, motor function. This phenomenon is called differential blockade. Differential blockade is the result of a number of factors, including the size of the nerve, the presence and amount of myelin, and the location of particular fibers within a nerve bundle. For conduction to be effectively blocked, the local anesthetic must exert its effects over the distance between several nodes of Ranvier. Since the smallest nerves (C fibers) have no myelin, they can be most easily blocked thus, sympathetic functions often are blocked soon after a local anesthetic is applied to a particular nerve bundle. Small myelinated nerves have correspondingly short distances between nodes of Ranvier and therefore are often blocked next. These nerves subserve temperature and sharp pain sensation. Larger nerves then become blocked, accounting for the loss of function up to and including motor innervation. [Pg.331]

The exact reason for the differential susceptibility of nerve fibers based on their axonal diameter is not known. One possible explanation is that the anesthetic is able to affect a critical length of the axon more quickly in unmyelinated fibers, or small myelinated neurons with nodes of Ranvier that are spaced closely together compared to larger fibers where the nodes are farther apart.17 As indicated earlier, a specific length of the axon must be affected by the anesthetic so that action potentials cannot be transmitted past the point of blockade. Other factors such as the firing rate of each axon or the position of the axon in the nerve bundle (e.g., in the outer part of the bundle versus buried toward the center of the nerve) may also affect susceptibility to local anesthesia.62 In any event, from a clinical perspective the smaller-diameter fibers appear to be affected first, although the exact reasons for this phenomenon remain to be determined. [Pg.155]

Many substances of widely different chemical structure abolish the excitability of nerve fibers on local application in concentrations that do not cause permanent injury and that may not affect other tissues. Sensory nerve fibers are most susceptible, so that these agents produce a selective sensory paralysis, which is utilized especially to suppress the pain of surgical operation. This property was first discovered in cocaine, but because of its toxicity and addiction liability, it has been largely displaced by synthetic chemicals. The oldest of these, procaine (novocaine), is still the most widely used. Its relatively low toxicity renders it especially useful for injections, but it is not readily absorbed from intact mucous membranes and is therefore not very effective for them. Many of its chemical derivatives are also used. They differ in penetration, toxicity, irritation, and local injury as well as in duration of action and potency. Absolute potency is not so important for practical use as is its balance with the other qualities. If cocaine is absorbed in sufficient quantity, it produces complex systemic actions, involving stimulation and paralysis of various parts of the CNS. These are mainly of toxicological and scientific interest. Its continued use leads to the formation of a habit, resembling morphinism. This is not the case with the other local anesthetics. [Pg.259]

Chloroprocaine, like other local anesthetics, blocks the generation and the conduction of nerve impulses, presumably by increasing the threshold for electrical excitation in the nerve by slowing the propagation of the nerve impulse and by reducing the rate of the rise of action potential. In general, the progression of anesthesia is related to the diameter, myelination, and conduction velocity of affected nerve fibers. Clinically, the order of loss of nerve function is as follows pain, temperature, touch, proprioception, and skeletal muscle tone. [Pg.147]

Like all local anesthetics, ropivacaine binds directly to the intracellular voltage-dependent sodium channels. It blocks primarily open and inactive sodium channels. Thus, this blocks the generation and conduction of nerve impulses. Lipid solubility appears to be the primary determinant of intrinsic anesthetic potency and toxicity. The more lipid-soluble, the greater is the potency of the local anesthetic. Hence, ropivacaine is less potent and less toxic than bupivacaine. In addition, the progression of blockade is affected by the diameter, myelination, and conduction velocity of the nerve fibers. [Pg.277]


See other pages where Nerve fibers, local anesthetics affecting is mentioned: [Pg.2801]    [Pg.134]    [Pg.9]    [Pg.155]    [Pg.259]    [Pg.688]    [Pg.8]    [Pg.414]   
See also in sourсe #XX -- [ Pg.239 , Pg.240 ]




SEARCH



Anesthetic

© 2024 chempedia.info