Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Natural convection, laminar channel flow

Some of the more commonly used methods of obtaining solutions to problems involving natural convective flow have been discussed in this chapter. Attention has been given to laminar natural convective flows over the outside of bodies, to laminar natural convection through vertical open-ended channels, to laminar natural convection in a rectangular enclosure, and to turbulent natural convective boundary layer flow. Solutions to the boundary layer forms of the governing equations and to the full governing equations have been discussed. [Pg.416]

In order to. illustrate how natural convection in a vertical channel can be analyzed, attention will be given to flow through a wide rectangular channel, i.e., to laminar, two-dimensional flow in a plane channel as shown in Fig. 8.15. This type of flow is a good model of a number of flows of practical importance. [Pg.368]

Heat transfer to a laminar flow in an annulus is complicated by the fact that both the velocity and thermal profiles are simultaneously developing near the entrance and, often, over the length of the heated channel. Natural convection may also be a factor. It is usually conservative (i.e., predicted heat-transfer coefficients are lower than those experienced) to use equations for the fully developed flow. [Pg.511]

W. W. Humphreys and J. R. Welty, Natural Convection With Mercury in a Uniformly Heated Vertical Channel During Unstable Laminar and Transitional Flow, AIChE Journal (21/2) 268-274, 1975. [Pg.295]

Equipment designs based on indirect conduction usually transfer the heat from the primary heat transfer fluid to the intermediate wall within some kind of internal duct or channel. Transfer coefficients for these cases depend on the nature of the flow (laminar or turbulent) and the geometry of the duct or channel (short or long). Expressions for evaluating the transfer coefficients for these cases are available in standard texts. An expression for the convective thermal resistance can be generated similar to that derived for the conductive resistance ... [Pg.1437]

The high sensitivity of the Allendoerfer cell makes it of great value in the detection of unstable radicals but, for the study of the kinetics and mechanism of radical decay, the use of a hydrodynamic flow is required. The use of a controlled, defined, and laminar flow of solution past the electrode allows the criteria of mechanism to be established from the solution of the appropriate convective diffusion equation. The uncertain hydrodynamics of earlier in-situ cells employing flow, e.g. Dohrmann [42-45] and Kastening [40, 41], makes such a computational process uncertain and difficult. Similarly, the complex flow between helical electrode surface and internal wall of the quartz cell in the Allendoerfer cell [54, 55] means that the nature of the flow cannot be predicted and so the convective diffusion equation cannot be readily written down, let alone solved Such problems are not experienced by the channel electrode [59], which has well-defined hydrodynamic properties. Compton and Coles [60] adopted the channel electrode as an in-situ ESR cell. [Pg.317]

As highlighted by Shah and London [2], a natural tendency exists to use in convection problems a large number of different sets of dimensionless groups based on the analyst s particular normalization of the differential equations and boundary conditions. An effort to standardize the definitions of dimensionless groups for laminar flows through channels was made by Shah and London [2] some years ago. In this section, the normalization of the convection problems proposed by Shah and London will be followed. [Pg.497]


See other pages where Natural convection, laminar channel flow is mentioned: [Pg.355]    [Pg.192]    [Pg.404]    [Pg.407]    [Pg.352]    [Pg.79]    [Pg.90]    [Pg.514]    [Pg.479]    [Pg.1947]   
See also in sourсe #XX -- [ Pg.366 , Pg.367 , Pg.368 , Pg.369 , Pg.370 , Pg.371 , Pg.372 , Pg.373 , Pg.374 , Pg.375 , Pg.376 , Pg.377 , Pg.378 , Pg.379 , Pg.380 , Pg.381 , Pg.382 , Pg.383 , Pg.384 ]




SEARCH



Channel flow laminar

Channel flow natural

Channel flow, natural convection

Convection channel flow

Convection laminar flow

Flow channels

Laminar natural convection

Natural convection

Natural flow

Naturalized flow

© 2024 chempedia.info