Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Myosin sarcomere

Figure 14.10 A muscle viewed under the microscope is seen to contain many myofibrils that show a cross-striated appearance of alternating light and darkbands, arranged in repeating units called sarcomeres. The dark bands comprise myosin filaments and are interupted by M (middle) lines, which link adjacent myosin filaments to each other. Figure 14.10 A muscle viewed under the microscope is seen to contain many myofibrils that show a cross-striated appearance of alternating light and darkbands, arranged in repeating units called sarcomeres. The dark bands comprise myosin filaments and are interupted by M (middle) lines, which link adjacent myosin filaments to each other.
Within each sarcomere the relative sliding of thick and thin filaments is brought about by "cross-bridges," parts of the myosin molecules that stick out from the myosin filaments and interact cyclically with the thin actin filaments, transporting them hy a kind of rowing action. During this process, the hydrolysis of ATP to ADP and phosphate couples the conformational... [Pg.291]

The shortening of a sarcomere (Eigure 17.22) involves sliding motions in opposing directions at the two ends of a myosin thick filament. Net sliding motions in a specific direction occur because the thin and thick filaments both have... [Pg.550]

FIGURE 17.21 A drawing of the arrangement of the elastic protein titin in the skeletal mnscle sarcomere. Titin filaments originate at the periphery of the M band and extend along the myosin filaments to the Z lines. These titin filaments produce the passive tension existing in myofibrils that have been stretched so that the thick and thin filaments no longer overlap and cannot interact. (Adapted from Ohtsuki, ., Maruyama, K, and Ebashi,. S ., 1986. Advances ia Protein Chemisti y 38 1—67.)... [Pg.550]

Studies on muscle contraction carried out between 1930 and 1960 heralded the modem era of research on cytoskeletal stmctures. Actin and myosin were identified as the major contractile proteins of muscle, and detailed electron microscopic studies on sarcomeres by H.E. Huxley and associates in the 1950s produced the concept of the sliding filament model, which remains the keystone to an understanding of the molecular mechanisms responsible for cytoskeletal motility. [Pg.3]

Figure 7. Length tension relationship. A schematic diagram showing how force varies with sarcomere length, and how this is explained by the relative amount of overlap between the thick and the thin filaments, and hence the numbers of myosin crossbridges in the thick filaments that can interact with actin in the thin filaments. Figure 7. Length tension relationship. A schematic diagram showing how force varies with sarcomere length, and how this is explained by the relative amount of overlap between the thick and the thin filaments, and hence the numbers of myosin crossbridges in the thick filaments that can interact with actin in the thin filaments.
Formation of this complex promotes the release of Py which initiates the power stroke. This is followed by release of ADP and is accompanied by a large conformational change in the head of myosin in relation to its tail (Figure 49-7), pulling actin about 10 nm toward the center of the sarcomere. This is the power stroke. The myosin is now in a so-called low-energy state, indicated as actin-myosin. [Pg.561]

Myosinbinding protein C Arranged transversely in sarcomere A-bands Binds myosin and titin. Plays a role in maintaining the structural integrity of the sarcomere. [Pg.566]

Smooth muscles have molecular structures similar to those in striated muscle, but the sarcomeres are not aligned so as to generate the striated appearance. Smooth muscles contain a-actinin and tropomyosin molecules, as do skeletal muscles. They do not have the troponin system, and the fight chains of smooth muscle myosin molecules differ from those of striated muscle myosin. Regulation of smooth muscle contraction is myosin-based, unlike striated muscle, which is actin-based. However, like striated muscle, smooth muscle contraction is regulated by Ca. ... [Pg.570]

Explain the functions of the following myosin crossbridges, troponin, tropomyosin, sarcomeres, Z lines, neuromuscular junction, transverse tubules, and sarcoplasmic reticulum... [Pg.139]

In the absence of ATP, myosin crossbridges are unable to release the actin. As a result, the sarcomeres, and therefore the muscle, remain contracted. This phenomenon is referred to as rigor mortis. Following death, the concentration of intracellular calcium increases. This calcium allows the... [Pg.145]

Because there are no sarcomeres in smooth muscle, there are no Z lines. Instead, the actin filaments are attached to dense bodies. These structures, which contain the same protein as Z lines, are positioned throughout the cytoplasm of the smooth muscle cell as well as attached to the internal surface of the plasma membrane. Myosin filaments are associated with the actin filaments, forming contractile bundles oriented in a diagonal manner. This arrangement forms a diamond-shaped lattice of contractile elements throughout the cytoplasm. Consequently, the interaction of actin and myosin during contraction causes the cell to become shorter and wider. [Pg.157]

You may be asked to draw a diagram of the sarcomere. It is made up of actin and myosin filaments, as shown below. The thick myosin filaments contain many crossbridges, which, when activated, bind to the thin actin filaments. Tropomyosin molecules (containing troponin) run alongside the actin filaments and play an important role in excitation-contraction coupling. [Pg.189]

Z line The junction between neighbouring actin filaments that forms the border between sarcomeres. It has a Z-shaped appearance on the diagram. M line The middle zone of the sarcomere, formed from the junction between neighbouring myosin filaments. There are no cross-bridges in this region. [Pg.189]

Binding of myosin to actin triggers pivoting of the myosin head and shortening of the sarcomere. This is the powerstroke. [Pg.190]

Fig. 2. Macroscopic and microscopic structure of muscle (a) Entire muscle and its cross-section with fatty septa, (b) Fascicle with several muscle fibres (cells). A layer of fat along the fascicle is indicated, (c) Striated myofibre corresponding with one single muscle cell containing several nuclei. The lengths of a myofibre can be several tens of centimetres, (d) Myofibril inside a myocyte. It is one contractile element and contains actin and myosin and further proteins important for the muscular function, (e) Electron myograph of human skeletal muscle showing the band structure caused by the contractile myofilaments in the sarcomeres. One nucleus (Nu) and small glycogen granules (arrow, size <0.1 pm) are indicated. Fig. 2. Macroscopic and microscopic structure of muscle (a) Entire muscle and its cross-section with fatty septa, (b) Fascicle with several muscle fibres (cells). A layer of fat along the fascicle is indicated, (c) Striated myofibre corresponding with one single muscle cell containing several nuclei. The lengths of a myofibre can be several tens of centimetres, (d) Myofibril inside a myocyte. It is one contractile element and contains actin and myosin and further proteins important for the muscular function, (e) Electron myograph of human skeletal muscle showing the band structure caused by the contractile myofilaments in the sarcomeres. One nucleus (Nu) and small glycogen granules (arrow, size <0.1 pm) are indicated.
Each fibre contains an array of parallel myofibrils each consisting of overlapping thick and thin filaments that form repeating units (sarcomeres) along the length of the fibre (Figure 13.5). The thick filaments are composed almost entirely of the protein myosin, whereas the thin filaments contain actin as well as troponin and tropomyosin. [Pg.279]

Figure 13.5 Electron micrograph of part of a longitudinal section of a myofibril. Identification of components and the mechanism of contraction. When a muscle fibre is stimulated to contract, the actin and myosin filaments react by sliding past each other but with no change in length of either myofilament. The thick myosin strands in the A band are relatively stationary, whereas the thin actin filaments, which are attached to the Z discs, extend further into the A band and may eventually obliterate the H band. Because the thin filaments are attached to Z discs, the discs are drawn toward each other, so that the sarcomeres, the distance between the adjacent Z-discs, are compressed, the myofibril is shortened, and contraction of the muscle occurs. Contraction, therefore, is not due to a shortening of either the actin or the myosin filaments but is due to an increase in the overlap between the filaments. The force is generated by millions of cross-bridges interacting with actin filaments (Fig. 13.6). The electron micrograph was kindly provided by Professor D.S. Smith. Figure 13.5 Electron micrograph of part of a longitudinal section of a myofibril. Identification of components and the mechanism of contraction. When a muscle fibre is stimulated to contract, the actin and myosin filaments react by sliding past each other but with no change in length of either myofilament. The thick myosin strands in the A band are relatively stationary, whereas the thin actin filaments, which are attached to the Z discs, extend further into the A band and may eventually obliterate the H band. Because the thin filaments are attached to Z discs, the discs are drawn toward each other, so that the sarcomeres, the distance between the adjacent Z-discs, are compressed, the myofibril is shortened, and contraction of the muscle occurs. Contraction, therefore, is not due to a shortening of either the actin or the myosin filaments but is due to an increase in the overlap between the filaments. The force is generated by millions of cross-bridges interacting with actin filaments (Fig. 13.6). The electron micrograph was kindly provided by Professor D.S. Smith.

See other pages where Myosin sarcomere is mentioned: [Pg.127]    [Pg.290]    [Pg.291]    [Pg.292]    [Pg.542]    [Pg.550]    [Pg.551]    [Pg.356]    [Pg.358]    [Pg.32]    [Pg.62]    [Pg.64]    [Pg.65]    [Pg.66]    [Pg.202]    [Pg.206]    [Pg.209]    [Pg.212]    [Pg.558]    [Pg.35]    [Pg.142]    [Pg.145]    [Pg.145]    [Pg.145]    [Pg.152]    [Pg.152]    [Pg.153]    [Pg.157]    [Pg.168]    [Pg.186]    [Pg.165]    [Pg.7]    [Pg.301]   
See also in sourсe #XX -- [ Pg.138 ]




SEARCH



Myosin

Sarcomeres myosin filaments

© 2024 chempedia.info