Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Multiplicity electron spin

Specify a geometry (and charge and multiplicity electron spin can be handled in DFT by using separate a- and (S-spin density functions). [Pg.458]

These limitations lead to electron spin multiplicity restrictions and to differing nuclear spin statistical weights for the rotational levels. Writing the electronic wavefunction as the product of an orbital fiinction and a spin fiinction there are restrictions on how these functions can be combined. The restrictions are imposed by the fact that the complete function has to be of synnnetry... [Pg.174]

While each of die previous examples illustrated just one of the electron spin polarization iiiechanisms, the spectra of many systems involve polarizations from multiple iiiechanisms or a change in meclianism with delay time. [Pg.1613]

To fill out Table 8-1, change the element symbols in the last line to Li, Be, or B and designate the charge and spin multiplicities as 1 1, 2 1, 3 1 in that order. In line 5, the first number is the single positive charge and the second number is the spin multiplicity, 1 for paired electronic spins and 2 for an unpaired election. A... [Pg.240]

Secondly, you must describe the electron spin state of the system to be calculated. Electrons with their individual spins of sj=l/2 can combine in various ways to lead to a state of given total spin. The second input quantity needed is a description of the total spin S=Esj. Since spin is a vector, there are various ways of combining individual spins, but the net result is that a molecule can have spin S of 0, 1/2, 1,. These states have a multiplicity of 2S-tl = 1, 2, 3,. ..,that is, there is only one way of orienting a spin of 0, two ways of orienting a spin of 1/2, three ways of orienting a spin of 1, and so on. [Pg.218]

In helium we need to look more closely at the consequences of electron spin since this is the prototype of all atoms and molecules having easily accessible states with two different multiplicities. [Pg.219]

In other cases, discussed below, the lowest electron-pair-bond structure and the lowest ionic-bond structure do not have the same multiplicity, so that (when the interaction of electron spin and orbital motion is neglected) these two states cannot be combined, and a knowledge of the multiplicity of the normal state of the molecule or complex ion permits a definite statement as to the bond type to be made. [Pg.72]

The magnetic field seen by the probe neutron is solely due to the magnetic dipole moment density of the unpaired electrons. In other words, the magnetisation density is simply related to the electron spin density by a multiplicative factor, and there is no ambiguity in its definition. [Pg.256]

In the former, electrons are assigned to orbitals in pairs, the total spin is zero, so the multiplicity is 1. In this case, the restricted Hartree-Fock method (RHF) can be applied. For radicals with doublet or triplet states, the unrestricted Hartree-Fock (UHF) has to be applied. In this method, a and, 3 electrons (spin up and spin down) are assigned to different spatial orbitals, so there are two distinct sets I and FJf... [Pg.7]

By far the most important influence of a nuclear spin on the EPR spectrum is through the interaction between the electron spin S and the nuclear spin I. Usually, at X-band frequencies this interaction is weaker, by an order of magnitude or more, than the electronic Zeeman interaction, and so it introduces small changes in the EPR spectrum known as hyperfine structure. As a first orientation to these patterns, note that just like the electron spin S, also the nuclear spin / has a multiplicity ... [Pg.68]

Single (or multiple) electrons or holes can be bound locally to a small semiconductor nanostructure or to a single impurity in a solid. The resulting discrete energy levels can be used to define a spin qubit. Coherent control and read-out... [Pg.192]

Electron donor-acceptor complexes, electron transfer in the thermal and photochemical activation of, in organic and organometallic reactions, 29, 185 Electron spin resonance, identification of organic free radicals, 1, 284 Electron spin resonance, studies of short-lived organic radicals, 5, 23 Electron storage and transfer in organic redox systems with multiple electrophores, 28, 1... [Pg.336]

For a specific dn electron configuration, there are usually several spectroscopic states that correspond to energies above the ground state term. However, they may not have the same multiplicity as the ground state. When the spectroscopic state for the free ion becomes split in an octahedral field, each ligand field component has the same multiplicity as the ground state (see Table 18.3). Transitions between spectroscopic states having different multiplicities are spin forbidden. Because the T2g and Eg spectroscopic... [Pg.648]

The relationship between different components of orbital angular momentum such as Lz and Lx can be investigated by multiple SG experiments as discussed for electron spin and photon polarization before. The results are in fact no different. This is a consequence of the noncommutativity of the operators Lx and Lz. The two observables cannot be measured simultaneously. While total angular momentum is conserved, the components vary as the applied analyzing field changes. As in the case of spin or polarization, measurement of Lx, for instance, disturbs any previously known value of Lz. The structure of the wave function does not allow Lx to be made definite when Lz has an eigenvalue, and vice versa. [Pg.233]

The electronic spin-state crossover in [Fe(HB(pz)3)2] has also been observed in the fine structure of its fC-edge x-ray absorption spectrum [38]. The changes in the x-ray absorption spectra of [Fe(HB(pz)3)2] are especially apparent between 293 and 450 K at ca. 25 eV, as is shown in Fig. 5. The 293 K x-ray absorption spectral profile observed in Fig. 5 for [Fe(HB(pz)3)2] has been reproduced [39] by a multiple photoelectron scattering calculation, a calculation that indicated that up to 33 atoms at distances of up to 4.19 A are involved in the scattering. As expected, the extended x-ray absorption fine structure reveals [38] no change in the average low-spin iron(II)-nitro-gen bond distance of 1.97 A in [Fe(HB(pz)3)2] upon cooling from 295 to 77 K. [Pg.116]

During the last few years the versatility of ENDOR spectroscopy has been improved by a number of new techniques which make use either of special types of pumping fields (CP-ENDOR, PM-ENDOR), of more than one rf field (DOUBLE ENDOR, multiple quantum transitions, nuclear spin decoupling) or a different display of the spectrum (EI-EPR). In addition to these techniques, alternative methods have been developed (electron spin echo and electron spin echo ENDOR) which are able to supplement or to replace the ENDOR experiment under certain conditions. The utility of all these various advanced techniques, particularly in studies of transition metal compounds, has recently been demonstrated. [Pg.125]


See other pages where Multiplicity electron spin is mentioned: [Pg.4]    [Pg.538]    [Pg.4]    [Pg.538]    [Pg.267]    [Pg.176]    [Pg.1140]    [Pg.1548]    [Pg.1549]    [Pg.451]    [Pg.264]    [Pg.168]    [Pg.227]    [Pg.561]    [Pg.59]    [Pg.361]    [Pg.55]    [Pg.121]    [Pg.49]    [Pg.549]    [Pg.44]    [Pg.194]    [Pg.476]    [Pg.558]    [Pg.659]    [Pg.273]    [Pg.249]    [Pg.116]    [Pg.182]    [Pg.159]    [Pg.123]    [Pg.429]    [Pg.25]    [Pg.127]   
See also in sourсe #XX -- [ Pg.4 ]




SEARCH



Electronic spin multiplicity Excited-state interactions with

Multiple electrons

Multiplicity, electronic

Multiplicity, spin

Spin Multiplicity of Electronic States

© 2024 chempedia.info