Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Multiple reactions piston flow

In Fig. 28, the abscissa kt is the product of the reaction rate constant and the reactor residence time, which is proportional to the reciprocal of the space velocity. The parameter k co is the product of the CO inhibition parameter and inlet concentration. Since k is approximately 5 at 600°F these three curves represent c = 1, 2, and 4%. The conversion for a first-order kinetics is independent of the inlet concentration, but the conversion for the kinetics of Eq. (48) is highly dependent on inlet concentration. As the space velocity increases, kt decreases in a reciprocal manner and the conversion for a first-order reaction gradually declines. For the kinetics of Eq. (48), the conversion is 100% at low space velocities, and does not vary as the space velocity is increased until a threshold is reached with precipitous conversion decline. The conversion for the same kinetics in a stirred tank reactor is shown in Fig. 29. For the kinetics of Eq. (48), multiple solutions may be encountered when the inlet concentration is sufficiently high. Given two reactors of the same volume, and given the same kinetics and inlet concentrations, the conversions are compared in Fig. 30. The piston flow reactor has an advantage over the stirred tank... [Pg.119]

Chapter 2 developed a methodology for treating multiple and complex reactions in batch reactors. The methodology is now applied to piston flow reactors. Chapter 3 also generalizes the design equations for piston flow beyond the simple case of constant density and constant velocity. The key assumption of piston flow remains intact there must be complete mixing in the direction perpendicular to flow and no mixing in the direction of flow. The fluid density and reactor cross section are allowed to vary. The pressure drop in the reactor is calculated. Transpiration is briefly considered. Scaleup and scaledown techniques for tubular reactors are developed in some detail. [Pg.81]


See other pages where Multiple reactions piston flow is mentioned: [Pg.89]    [Pg.186]    [Pg.20]    [Pg.15]    [Pg.130]   
See also in sourсe #XX -- [ Pg.82 ]




SEARCH



Multiple flows

Multiple reactions

Piston

Piston, pistons

Pistoning

Reaction multiple reactions

© 2024 chempedia.info