Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Multiple-pulse sequence spin inversion

The INEPT (Insensitive Nuclei Enhanced by Polarization Transfer) experiment [6, 7] was the first broadband pulsed experiment for polarization transfer between heteronuclei, and has been extensively used for sensitivity enhancement and for spectral editing. For spectral editing purposes in carbon-13 NMR, more recent experiments such as DEPT, SEMUT [8] and their various enhancements [9] are usually preferable, but because of its brevity and simplicity INEPT remains the method of choice for many applications in sensitivity enhancement, and as a building block in complex pulse sequences with multiple polarization transfer steps. The potential utility of INEPT in inverse mode experiments, in which polarization is transferred from a low magnetogyric ratio nucleus to protons, was recognized quite early [10]. The principal advantage of polarization transfer over methods such as heteronuclear spin echo difference spectroscopy is the scope it offers for presaturation of the unwanted proton signals, which allows clean spec-... [Pg.94]

FIGURE 12.16 Pulse sequence for the triple resonance 3D NMR experiment HNCO. H and N denote H and 15N, C denotes 13C=0, and K denotes 13C . Pulses at times 1, 2, and 3 constitute an INEPT sequence that transfers coherence from H to. V, where it precesses during q. Pulses at times 6, 7, and 8 represent an HMQC sequence that creates multiple quantum coherence in C (where it precesses during and transfers coherence back to N. Pulses 10 and 11 are an inverse INEPT sequence that transfers coherence back to H for detection during f3.The other 180° pulses refocus heteronuclear spin couplings. Note that coherence is not transferred to spin K. [Pg.344]

The processes that occur during the evolution period are probably the most important in describing the effect of the complete pulse sequence. During this period coherence can evolve, coherence can be selectively manipulated or coherence transfer can occur. Coherence manipulation can be the inversion of the coherence order (WATERGATE experiment) or in a l S spin system a phase shift depending upon signal multiplicity (APT or SEMUT experiment). In the case of heteronuclear IS spin systems the creation of antiphase coherence and subsequent polarization transfer using a INEPT or a DEPT unit can be used in multiplicity edited experiments or heteronuclear 2D correlation experiments. In transient NOE experiments such as ROE and TROESY, coherence... [Pg.179]

To conclude this section on 2D NMR of liquid crystals, some studies of more exotic liquid crystalline systems are pointed out. Polymer dispersed nematic liquid crystals have attracted much attention because of their applications as optical display panels. Deuteron 2D quadrupole echo experiments have been reported [9.28] in the isotropic and nematic phases of / -deuterated 5CB dispersed in polymers. A similar technique was used [9.29] to study two model bilayer membranes. Both studies allow determination of the lineshape F(u ) due to quadrupolar interactions and the homogeneous linewidth L(u ) of the individual lines [9.28]. The 2D quadrupole echo experiment has also been used [9.30] to separate chemical shift and quadrupolar splitting information of a perdeuterated solute dissolved in a lyotropic liquid crystal. The method was compared with the multiple-quantum spectroscopy that is based on the observation of double-quantum coherence whose evolution depends on the chemical shift but not on the quadrupolar splitting. The multiple-quantum method was found to give a substantial chemical shift resolution. The pulse sequences for these methods and their treatment using density matrix formalism were summarized [9.30] for a spin 1=1 system with non-zero chemical shift. Finally, 2D deuteron exchange NMR was used [9.31] to study ring inversion of solutes in liquid crystalline solvents. [Pg.246]


See other pages where Multiple-pulse sequence spin inversion is mentioned: [Pg.47]    [Pg.6192]    [Pg.145]    [Pg.152]    [Pg.157]    [Pg.249]    [Pg.6191]    [Pg.171]    [Pg.106]    [Pg.36]    [Pg.42]    [Pg.189]    [Pg.246]    [Pg.39]    [Pg.63]    [Pg.10]    [Pg.166]    [Pg.274]    [Pg.7]    [Pg.229]    [Pg.493]    [Pg.4]    [Pg.195]    [Pg.346]    [Pg.438]    [Pg.559]    [Pg.229]    [Pg.339]    [Pg.196]    [Pg.1062]    [Pg.100]    [Pg.215]    [Pg.144]    [Pg.6]    [Pg.5]    [Pg.88]    [Pg.200]    [Pg.339]    [Pg.84]    [Pg.26]   
See also in sourсe #XX -- [ Pg.153 ]




SEARCH



Inverses multiplication

Inversion pulses

Inversion, multiple

Multiple pulse sequence

Multiplicity, spin

Pulse sequenc

Pulse sequence

© 2024 chempedia.info