Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Mukaiyama aldol reactions auxiliaries

Mukaiyama aldol reactions have been reported, usually using chiral additives although chiral auxiliaries have also been used. This reaction can also be run with the aldehyde or ketone in the form of its acetal R R C(OR )2> in which case the product is the ether R COCHR2CR R OR instead of 27. Enol acetates and enol ethers also give this product when treated with acetals and TiCLi or a similar catalyst. When the catalyst is dibutyltin bis(triflate), Bu2Sn(OTf)2, aldehydes react, but not their acetals, while acetals of ketones react, but not the ketones themselves. [Pg.1223]

Another chiral auxiliary for controlling the absolute stereochemistry in Mukaiyama aldol reactions of chiral silyl ketene acetals has been derived from TV-methyl ephedrine.18 This has been successfully applied to the enantioselec-tive synthesis of various natural products19 such as a-methyl-/ -hydroxy esters (ee 91-94%),18,20 a-methyl-/Miydroxy aldehydes (91% ee),21 a-hydrazino and a-amino acids (78-91% ee),22 a-methyl-d-oxoesters (72-75% ee),20b cis- and trans-l1-lactams (70-96% ee),23 and carbapenem antibiotics.24... [Pg.145]

One of the early syntheses of orlistat (1) by Hoffmann-La Roche utilized the Mukaiyama aldol reaction as the key convergent step. Therefore, in the presence of TiCU, aldehyde 7 was condensed with ketene silyl acetal 8 containing a chiral auxiliary to assemble ester 9 as the major diastereomer in a 3 1 ratio. After removal of the amino alcohol chiral auxiliary via hydrolysis, the a-hydroxyl acid 10 was converted to P-lactone 11 through the intermediacy of the mixed anhydride. The benzyl ether on 11 was unmasked via hydrogenation and the (5)-7V-formylleucine side-chain was installed using the Mitsunobu conditions to fashion orlistat (1). [Pg.152]

Asymmetric Mukaiyama aldol reactions and reactions of silyl ketene acetals have been reported, " usually using chiral additives" although chiral auxiliaries... [Pg.1353]

The synthesis of the C1-C9 fragment 120 began with an auxiliary controlled aldol reaction of the chloroacetimide 121, where chlorine is present as a removable group to ensure high diastereoselectivity in what would otherwise have been a non-selective addition (Scheme 9-39). The Lewis acid-catalyzed, Mukaiyama aldol reaction of dienyl silyl ether 122 with / -chiral aldehyde 123 proceeded with 94%ds, giving the 3-anti product 124, as predicted by the opposed dipoles model [3]. Anti reduction of the aldol product and further manipulation then provided the C1-C9 fragment 120 of the bryostatins. [Pg.271]

The synthesis of the carboxylic acid 9a commenced with silylation of known alcohol 16 followed by reductive removal of the chiral auxiliary to give the aldehyde 17 (Scheme 3). Vinylogous Mukaiyama aldol reaction" " of 17 with Chan s diene 18" afforded the alcohol 19 in 95% yield with 10 1 diastereoselectivity. Treatment of 19 with PPTS in MeOH resulted in cleavage of the silyl ether and spontaneous methyl acetalization to provide the methyl acetal 20. Protection of the hydroxyl group of 20 by using MPM trichloroacetimidate in the presence of La(OTf >3" gave the MPM ether 21. Hydrolysis of the methyl ester of 21 afforded the carboxylic acid 9a. [Pg.148]

Remote asymmetric induction can be obtained through the use of chiral auxiliaries, such as valine derived oxazolidinones, within the framework of the vinylogous Mukaiyama aldol reaction. During the synthesis of khafrefungin, an antifungal agent, Kobayashi and coworkers reacted the vinylketene silyl A. O-acetal 56 with the aldehyde 57 to yield the a r/-aldol adduct 58 in excellent yield (98%) and high diastereoselectivity (> 20 1). ... [Pg.512]

Helmchen [67] and Oppolzer [68] investigated and documented the use of camphor-derived auxiliaries in Mukaiyama aldol reactions. Silyl ketene acetals 106 and 108 participate in diastereoselective additions to aldehydes in the presence of TiCl4, affording adducts with up to 99 1 diastereoselectivity (Equations 7 and 8). [Pg.112]

A vinylogous Mukaiyama reaction, similar to that utilized in our synthesis, was employed to introduce the C-, stereocenter in Nicolaou s synthesis and also in the synthesis of preswinholide A reported by the Nakata group I53k One notable reaction in Nakata s synthesis of preswinholide A was the auxiliary-controlled aldol reaction shown in Scheme 9-31. Here the Evans auxiliary is used to couple two relatively complex fragments 91 and 92 to give 93. Unusually, this reaction was best performed using the lithium enolate of imide 91. [Pg.266]

Our synthesis of (9S)-dihydroerythronolide A, which constitutes a formal synthesis of erythronolideA (226), depends on a key aldol reaction between the racemic aldehyde 244 and imide auxiliary 245 (Scheme 9-66) [84]. In this reaction, the auxiliary overrides any aldehyde facial bias, thus leading to an equimolar mixture of separable syn adducts 246 and 247. These two compounds were then processed separately and together provide five of the ten necessary stereocenters of erythronolideA (C9 will be oxidized). This synthesis also features the thioalkyla-tion of silyl enol ether 248 giving ketone 249, a process which can be compared with the Mukaiyama addition to aldehydes. Presumably, Felkin selectivity controls the Cii stereocenter while the mixture of C12 epimers was not detrimental as epi-merization could be effected in the subsequent elimination step. [Pg.287]

Acyl-1,3-thiazolidines-2-ones 1.123 (X = S, R = COOMe), obtained from cysteine methyl ether [261], have been introduced by Mukaiyama and coworkers for use in asymmetric aldol reactions [261, 433, 434, 435], In reactions of related //-acyl-1,3-oxazolidines-2-thiones 1.123 (X = O, R = COOMe), each enantiomer can be obtained either from L- or D-serine [434] and the auxiliaries can easily be recovered by methanolysis. Similarly, //-acyl derivatives of 1.121 (X = S) have been used in asymmetric aldol reactions [429, 436], and //-acyl- 1,3-thiazo-lidinethiones 1.123 (X = S, R = r -Pr) are useful in asymmetric acylation [437] and aldol and related reactions [437, 438], Cleavage of the chiral auxiliary is accomplished by aminolysis with O-benzylhydroxylamine or by reduction with LiAlH.,. ... [Pg.73]

Scheme 2.6 shows some examples of the use of chiral auxiliaries in the aldol and Mukaiyama reactions. The reaction in Entry 1 involves an achiral aldehyde and the chiral auxiliary is the only influence on the reaction diastereoselectivity, which is very high. The Z-boron enolate results in syn diastereoselectivity. Entry 2 has both an a-methyl and a (3-benzyloxy substituent in the aldehyde reactant. The 2,3-syn relationship arises from the Z-configuration of the enolate, and the 3,4-anti stereochemistry is determined by the stereocenters in the aldehyde. The product was isolated as an ester after methanolysis. Entry 3, which is very similar to Entry 2, was done on a 60-kg scale in a process development investigation for the potential antitumor agent (+)-discodermolide (see page 1244). [Pg.119]

Asymmetric Aldol-Type Reaction. CAB complex (2) is an excellent catalyst for the Mukaiyama condensation of simple achiral enol silyl ethers of ketones with various aldehydes. The CAB-catalyzed aldol process allows the formation of adducts in a highly diastereo- and enantioselective manner (up to 96% ee) under mild reaction conditions (eqs 4 and 5). The reactions are catalytic 20 mol % of catalyst is sufficient for efficient conversion, and the chiral auxiliary can be recovered and reused. [Pg.231]

The most successful imide systems for diastereoselective aldol addition reactions are, without question, the oxazolidinones 50-52 developed by Evans. These furnish syn aldol adducts with superb selectivity for a broad range of substrates (Scheme 4.5) [6, 13, 45-47). A hallmark of these system is that enolization yields exclusively the Z-enolates, which can be understood on the basis of steric considerations. Two important discoveries in the area proved critical to the unparalleled success enjoyed by Evans auxiliaries for diastereoselective aldol addition reactions. The first of these was the disclosure by Mukaiyama that the combination of di-n-butylboryl trifluorometh-anesulfonate (n-Bu2BOTf) and diisopropyl ethyl amine can be employed for the generation of dialkylboron enolates from ketones [48]. The second key observation was by Roster, who observed that aldol additions of boron enolates proceeded with higher levels of simple induction [49], This phenomenon is attributed to the short B-0 distances in the attendant Zimmer-man-Traxler transition state structure [14, 47]. [Pg.107]


See other pages where Mukaiyama aldol reactions auxiliaries is mentioned: [Pg.110]    [Pg.11]    [Pg.8]    [Pg.2209]    [Pg.275]    [Pg.86]    [Pg.189]    [Pg.103]    [Pg.493]    [Pg.134]    [Pg.103]    [Pg.281]    [Pg.1237]    [Pg.394]    [Pg.132]    [Pg.167]    [Pg.267]    [Pg.493]    [Pg.480]    [Pg.9]    [Pg.9]    [Pg.163]   
See also in sourсe #XX -- [ Pg.215 , Pg.216 , Pg.217 , Pg.218 ]




SEARCH



Mukaiyama

Mukaiyama aldol reaction

Reaction auxiliaries

© 2024 chempedia.info