Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Moving-belt interface ionization methods used

The range of compounds from which electron ionization spectra may be obtained using the particle-beam interface is, like the moving-belt interface, extended when compared to using more conventional methods of introduction, e.g. the solids probe, or via a GC. It is therefore not unusual for specffa obtained using this type of interface not to be found in commercial libraries of mass spectra. [Pg.149]

El may be used with the moving-belt and particle-beam interfaces. Cl with the moving-belt, particle-beam and direct-liquid-introduction interfaces, and FAB with the continuous-flow FAB interface. A brief description of these ionization methods will be provided here but for further details the book by Ashcroft [8] is recommended. [Pg.52]

When optimum experimental conditions have been obtained, all of the mobile phase is removed before the analyte(s) are introduced into the mass spectrometer for ionization. As a consequence, with certain limitations, it is possible to choose the ionization method to be used to provide the analytical information required. This is in contrast to the other LC-MS interfaces which are confined to particular forms of ionization because of the way in which they work. The moving belt can therefore provide both electron and chemical ionization spectra, yielding both structural and molecular weight information. [Pg.136]

Different methods are used to tackle these problems [10-13], Some of these coupling methods, such as moving-belt coupling or the particle beam (PB) interface, are based on the selective vaporization of the elution solvent before it enters the spectrometer source. Other methods such as direct liquid introduction (DLI) [14] or continuous flow FAB (CF-FAB) rely on reducing the flow of the liquid that is introduced into the interface in order to obtain a flow that can be directly pumped into the source. In order to achieve this it must be reduced to one-twentieth of the value calculated above, that is 5 pi min. These flows are obtained from HPLC capillary columns or from a flow split at the outlet of classical HPLC columns. Finally, a series of HPLC/MS coupling methods such as thermospray (TSP), electrospray (ESI), atmospheric pressure chemical ionization (APCI) and atmospheric pressure photoionization (APPI) can tolerate flow rates of about 1 ml min 1 without requiring a flow split. Introducing the eluent entirely into the interface increases the detection sensitivity of these methods. ESI can accept flow rates from 10 nl min-1 levels to... [Pg.221]


See other pages where Moving-belt interface ionization methods used is mentioned: [Pg.1146]    [Pg.493]    [Pg.504]    [Pg.62]    [Pg.3]    [Pg.489]    [Pg.375]    [Pg.959]    [Pg.405]    [Pg.251]    [Pg.294]    [Pg.209]   
See also in sourсe #XX -- [ Pg.79 , Pg.81 ]




SEARCH



Belt, belts

Belts

Interfaces moving-belt interface

Ionization methods used

Moving belt

Moving interface

Moving method

Moving-belt interface

Moving-belt interface (continued ionization methods used

© 2024 chempedia.info