Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Morphology and crystal classes

Not only could unit cells be stacked by translation alone to yield the internal structure of the crystal, but, depending on the rate [Pg.4]

The faces of a crystal, irrespective of the overall shape of the crystal, could always be labelled with respect to the crystal axes. Each face was given a set of three integers, (h k l), called Miller indices. These are such that the crystal face in question made intercepts on the three axes of a/h, b/k and c/l. A crystal face that intersected the axes in exactly the axial ratios was given importance as the parametral plane, with indices (111). [Miller indices are now used to label any plane, internal or external, in a crystal, as described in Chapter 2, and the nomenclature is not just confined to the external faces of a crystal.] [Pg.5]

The application of Miller indices allowed crystal faces to be labelled in a consistent fashion. This, together with accurate measurements of the angles between crystal faces, allowed the morphology of crystals to be described in a reproducible way, which, in itself, lead to an appreciation of the symmetry of crystals. Symmetry was broken down into a combination of symmetry elements. These were described as mirror planes, axes of rotation, and so on, that, when taken in combination, accounted for the external shape of the crystal. The crystals of a particular mineral, regardless of its precise morphology, were always found to possess the same symmetry elements. [Pg.5]

Symmetry elements are operators. That is, each one describes an operation, such as reflection. When these operations are applied to the crystal, the external form is reproduced. It was found that all crystals fell into one or another of 32 different groups of symmetry operations. These were called crystal classes. Each crystal class could be allocated to one of the six crystal families. These symmetry elements and the resulting crystal classes are described in detail in Chapters 3 and 4. [Pg.5]


See other pages where Morphology and crystal classes is mentioned: [Pg.3]    [Pg.3]   


SEARCH



Crystal class

© 2024 chempedia.info