Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Moment-transport equation polydisperse

The answer to this question is mainly driven by the computational cost of solving the kinetic equation due to the large number of independent variables. In the simplest example of a 3D velocity-distribution function n t, x, v) the number of independent variables is 1 + 3 + 3 = 1. However, for polydisperse multiphase flows the number of mesoscale variables can be much larger than three. In comparison, the moment-transport equations involve four independent variables (physical space and time). Furthermore, the form of the moment-transport equations is such that they can be easily integrated into standard computational-fluid-dynamics (CFD) codes. Direct solvers for the kinetic equation are much more difficult to construct and require specialized numerical methods if accurate results are to be obtained (Filbet Russo, 2003). For example, with a direct solver it is necessary to discretize all of phase space since a priori the location of nonzero values of n is unknown, which can be very costly when phase space is not bounded. [Pg.22]

The remaining chapters in this book are organized as follows. Chapter 2 provides a brief introduction to the mesoscale description of polydisperse systems. There, the mathematical definition of a number-density function (NDF) formulated in terms of different choices for the internal coordinates is described, followed by an introduction to population-balance equations (PBE) in their various forms. Chapter 2 concludes with a short discussion on the differences between the moment-transport equations associated with the PBE and those arising due to ensemble averaging in turbulence theory. This difference is very important, and the reader should keep in mind that at the mesoscale level the microscale turbulence appears in the form of correlations for fluid drag, mass transfer, etc., and thus the mesoscale models can have non-turbulent solutions even when the microscale flow is turbulent (i.e. turbulent wakes behind individual particles). Thus, when dealing with turbulence models for mesoscale flows, a separate ensemble-averaging procedure must be applied to the moment-transport equations of the PBE (or to the PBE itself). In this book, we are primarily... [Pg.27]

The primary purpose of this chapter is to introduce the key concepts and notation needed to develop models for polydisperse multiphase flows. We thus begin with a general discussion of the number-density function (NDF) in its various forms, followed by example transport equations for the NDF with known (PBE) and computed (GPBE) particle velocity. These transport equations are written in terms of averaged quantities whose precise definitions will be presented in Chapter 4. We then consider the moment-transport equations that are derived from the NDE transport equation by integration over phase space. Einally, we briefly describe how turbulence modeling can be undertaken starting from the moment-transport equations. [Pg.30]

The rest of this chapter is organized as follows. First, in Section 6.1, we consider the collision term for monodisperse hard-sphere collisions both for elastic and for inelastic particles. We introduce the kinetic closures due to Boltzmann (1872) and Enksog (1921) for the pair correlation function, and then derive the exact source terms for the velocity moments of arbitrary order and then for integer moments. Second, in Section 6.2, we consider the exact source terms for polydisperse hard-sphere collisions, deriving exact expressions for arbitrary and integer-order moments. Next, in Section 6.3, we consider simplified kinetic models for monodisperse and polydisperse systems that are derived from the exact collision source terms, and discuss their properties vis-d-vis the hard-sphere collision models. In Section 6.4, we discuss properties of the moment-transport equations derived from Eq. (6.1) with the hard-sphere collision models. Finally, in Section 6.5 we briefly describe how quadrature-based moment methods are applied to close the collision source terms for the velocity moments. [Pg.215]

Chapter 2 provides a brief introduction to the mesoscale description of polydisperse systems. In this chapter the many possible number-density functions (NDF), formulated with different choices for the internal coordinates, are presented, followed by an introduction to the PBE in their various forms. The chapter concludes with a short discussion on the differences between the moment-transport equations associated with the PBE, and those arising due to ensemble averaging in turbulence theory. [Pg.524]

As mentioned above, macroscale models are written in terms of transport equations for the lower-order moments of the NDF. The different types of moments will be discussed in Chapters 2 and 4. However, the lower-order moments that usually appear in macroscale models for monodisperse particles are the disperse-phase volume fraction, the disperse-phase mean velocity, and the disperse-phase granular temperature. When the particles are polydisperse, a description of the PSD requires (at a minimum) the mean and standard deviation of the particle size, or in other words the first three moments of the PSD. However, a more complete description of the PSD will require a larger set of particle-size moments. [Pg.20]

As in all mathematical descriptions of transport phenomena, the theory of polydisperse multiphase flows introduces a set of dimensionless numbers that are pertinent in describing the behavior of the flow. Depending on the complexity of the flow (e.g. variations in physical properties due to chemical reactions, collisions, etc.), the set of dimensionless numbers can be quite large. (Details on the physical models for momentum exchange are given in Chapter 5.) As will be described in detail in Chapter 4, a kinetic equation can be derived for the number-density function (NDF) of the velocity of the disperse phase n t, X, v). Also in this example, for clarity, we will assume that the problem has only one particle velocity component v and is one-dimensional in physical space with coordinate x at time t. Furthermore, we will assume that the NDF has been normalized (by multiplying it by the volume of a particle) such that the first three velocity moments are... [Pg.8]


See other pages where Moment-transport equation polydisperse is mentioned: [Pg.114]    [Pg.123]    [Pg.132]    [Pg.215]    [Pg.16]    [Pg.138]   
See also in sourсe #XX -- [ Pg.255 ]




SEARCH



Moment equations

Moment-transport equation

Polydisperse

Polydispersed

Polydispersion

Polydispersity

Polydispersiveness

Polydispersivity

Transport equation

© 2024 chempedia.info