Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Moment-transport equation monodisperse

The rest of this chapter is organized as follows. First, in Section 6.1, we consider the collision term for monodisperse hard-sphere collisions both for elastic and for inelastic particles. We introduce the kinetic closures due to Boltzmann (1872) and Enksog (1921) for the pair correlation function, and then derive the exact source terms for the velocity moments of arbitrary order and then for integer moments. Second, in Section 6.2, we consider the exact source terms for polydisperse hard-sphere collisions, deriving exact expressions for arbitrary and integer-order moments. Next, in Section 6.3, we consider simplified kinetic models for monodisperse and polydisperse systems that are derived from the exact collision source terms, and discuss their properties vis-d-vis the hard-sphere collision models. In Section 6.4, we discuss properties of the moment-transport equations derived from Eq. (6.1) with the hard-sphere collision models. Finally, in Section 6.5 we briefly describe how quadrature-based moment methods are applied to close the collision source terms for the velocity moments. [Pg.215]

We will now look at the integer moment-transport equations for two systems. The first corresponds to a monodisperse case with kinetic equation given by Eq. (6.1). The second is a bidisperse system with kinetic equations... [Pg.250]

For a monodisperse system the moment-transport equation derived from Eq. (6.1) is... [Pg.251]

The moment-transport equations discussed above become more and more complicated as the order increases. Moreover, these equations are not closed. In quadrature-based moment methods, the velocity-distribution function is reconstructed from a finite set of moments, thereby providing a closure. In this section, we illustrate how the closure hypothesis is applied to solve the moment-transport equations with hard-sphere collisions. For clarity, we will consider the monodisperse case governed by Eq. (6.131). Formally, we can re-express this equation in conservative form ... [Pg.261]

As mentioned above, macroscale models are written in terms of transport equations for the lower-order moments of the NDF. The different types of moments will be discussed in Chapters 2 and 4. However, the lower-order moments that usually appear in macroscale models for monodisperse particles are the disperse-phase volume fraction, the disperse-phase mean velocity, and the disperse-phase granular temperature. When the particles are polydisperse, a description of the PSD requires (at a minimum) the mean and standard deviation of the particle size, or in other words the first three moments of the PSD. However, a more complete description of the PSD will require a larger set of particle-size moments. [Pg.20]


See other pages where Moment-transport equation monodisperse is mentioned: [Pg.215]    [Pg.251]   
See also in sourсe #XX -- [ Pg.250 , Pg.251 ]




SEARCH



Moment equations

Moment-transport equation

Monodispersed

Monodispersivity

Transport equation

© 2024 chempedia.info