Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Molecular vibration, infrared active

The complexity of Raman spectra for polymers is reduced as with infrared spectra because vibrations of the same type superimpose. In addition, as with infrared spectroscopy, selection rules aid in determining which molecular vibrations are active. However, the criterion for Raman aetivity is a change in bond polarizability with molecular vibration or rotation in contrast to the infrared criterion of a change in dipole moment (Figure 6.6). This means that, for molecules such as carbon dioxide that show both a change in dipole moment and a change in polarizability,... [Pg.297]

At higher frequencies (above 200 cm ) the vibrational spectra for fullerenes and their cry.stalline solids are dominated by the intramolecular modes. Because of the high symmetry of the Cgo molecule (icosahedral point group Ih), there are only 46 distinct molecular mode frequencies corresponding to the 180 6 = 174 degrees of freedom for the isolated Cgo molecule, and of these only 4 are infrared-active (all with Ti symmetry) and 10 are Raman-active (2 with Ag symmetry and 8 with Hg symmetry). The remaining 32 eigcnfrequencies correspond to silent modes, i.e., they are not optically active in first order. [Pg.53]

Centrosymmetric molecules represent a limiting case as far as molecular symmetry is concerned. They are highly symmetric molecules. At the other extreme, molecules with very low symmetry should produce a set of Raman frequencies very similar to the observed set of infrared frequencies. Between these two extremes there are cases where some vibrations are both Raman and infrared active and others are active in Raman or infrared but not in both. Nitrate ion is an example of a molecule in this intermediate class. [Pg.304]

Vibrations of the symmetry class Ai are totally symmetrical, that means all symmetry elements are conserved during the vibrational motion of the atoms. Vibrations of type B are anti-symmetrical with respect to the principal axis. The species of symmetry E are symmetrical with respect to the two in-plane molecular C2 axes and, therefore, two-fold degenerate. In consequence, the free molecule should have 11 observable vibrations. From the character table of the point group 04a the activity of the vibrations is as follows modes of Ai, E2, and 3 symmetry are Raman active, modes of B2 and El are infrared active, and Bi modes are inactive in the free molecule therefore, the number of observable vibrations is reduced to 10. [Pg.44]

Ra = Raman active, IR = infrared active, ia = inactive molecular vibration. R and T denote rotations and translations, respectively... [Pg.46]

In an effort to understand the mechanisms involved in formation of complex orientational structures of adsorbed molecules and to describe orientational, vibrational, and electronic excitations in systems of this kind, a new approach to solid surface theory has been developed which treats the properties of two-dimensional dipole systems.61,109,121 In adsorbed layers, dipole forces are the main contributors to lateral interactions both of dynamic dipole moments of vibrational or electronic molecular excitations and of static dipole moments (for polar molecules). In the previous chapter, we demonstrated that all the information on lateral interactions within a system is carried by the Fourier components of the dipole-dipole interaction tensors. In this chapter, we consider basic spectral parameters for two-dimensional lattice systems in which the unit cells contain several inequivalent molecules. As seen from Sec. 2.1, such structures are intrinsic in many systems of adsorbed molecules. For the Fourier components in question, the lattice-sublattice relations will be derived which enable, in particular, various parameters of orientational structures on a complex lattice to be expressed in terms of known characteristics of its Bravais sublattices. In the framework of such a treatment, the ground state of the system concerned as well as the infrared-active spectral frequencies of valence dipole vibrations will be elucidated. [Pg.52]

Polymer films were produced by surface catalysis on clean Ni(100) and Ni(lll) single crystals in a standard UHV vacuum system H2.131. The surfaces were atomically clean as determined from low energy electron diffraction (LEED) and Auger electron spectroscopy (AES). Monomer was adsorbed on the nickel surfaces circa 150 K and reaction was induced by raising the temperature. Surface species were characterized by temperature programmed reaction (TPR), reflection infrared spectroscopy, and AES. Molecular orientations were inferred from the surface dipole selection rule of reflection infrared spectroscopy. The selection rule indicates that only molecular vibrations with a dynamic dipole normal to the surface will be infrared active [14.], thus for aromatic molecules the absence of a C=C stretch or a ring vibration mode indicates the ring must be parallel the surface. [Pg.84]

Both infrared (IR) and Raman spectroscopy have selection rules based on the symmetry of the molecule. Any molecular vibration that results in a change of dipole moment is infrared active. For a vibration to be Raman active, there must be a change of polarizability of the molecule as the transition occurs. It is thus possible to determine which modes will be IR active, Raman active, both, or neither from the symmetry of the molecule (see Chapter 3). In general, these two modes of spectroscopy are complementary specifically, if a molecule has a center of symmetry, no [R active vibration is also Raman active. [Pg.666]

The complex quantity, y6br = e (y(3)r) + i Im (x r), represents the nuclear response of the molecules. The induced polarization is resonantly enhanced when the Raman shift wp — ws matches the frequency Qr of a Raman-active molecular vibration (Fig. 6.1A). Therefore, y(3)r provides the intrinsic vibrational contrast mechanism in CRS-based microscopies. The nonresonant term y6bnr represents the electronic response of both the one-photon and the two-photon electronic transitions [30]. Typically, near-infrared laser pulses are used to prevent the effect of two-photon electronic resonances. With input laser pulse frequencies away from electronic resonances, y(3)nr is independent of frequency and is a real quantity. It is important to realize that the nonresonant contribution to the total nonlinear polarization is simply a source for an unspecific background signal, which provides no chemical contrast in some of the CRS microscopies. While CARS detection can be significantly effected by the nonresonant contribution y6bnr [30], SRS detection is inherently insensitive to it [27, 29]. As will be discussed in detail in Sects. 6.3 and 6.4, this has major consequences for the image contrast mechanism of CARS and SRS microscopy, respectively. [Pg.114]

The Infrared Region 515 12-4 Molecular Vibrations 516 12-5 IR-Active and IR-lnactive Vibrations 518 12-6 Measurement of the IR Spectrum 519 12-7 Infrared Spectroscopy of Hydrocarbons 522 12-8 Characteristic Absorptions of Alcohols and Amines 527 12-9 Characteristic Absorptions of Carbonyl Compounds 528 12-10 Characteristic Absorptions of C—N Bonds 533 12-11 Simplified Summary of IR Stretching Frequencies 535 12-12 Reading and Interpreting IR Spectra (Solved Problems) 537 12-13 Introduction to Mass Spectrometry 541 12-14 Determination of the Molecular Formula by Mass Spectrometry 545... [Pg.12]

The nature of the information that can be obtained from Raman experiments, namely, vibrational frequencies and band intensities, is similar but not identical to that of infrared spectroscopy. Therefore, it is appropriate to compare these two techniques. As mentioned previously, for a molecular vibration to be IR active, a change in dipole moment accompanying the vibrational transition is... [Pg.173]

Interaction of infrared radiation with a vibrating molecule is only possible if the electric vector of the radiation field oscillates with the same frequency as does the molecular dipole moment. A vibration is infrared active only if the molecular dipole moment is modulated by the normal vibration,... [Pg.15]

Spectra of molecules in the crystalline state, i.e., of molecular crystals, are obtained from molecules which are at fixed positions (sites) in the lattice (Fig. 2.6-1C). Normal (first-order) infrared and Raman spectra can be seen as spectra of hyper molecules , the unit cells (Schneider 1974, Schneider et al., 197.5). As a consequence, any molecular vibration is split into as many components as there are molecules present in the unit cell. Their infrared and Raman activity is determined by the symmetry of the unit cell. In addition, the translational and rotational degrees of freedom of molecules at their sites are frozen to give rise to lattice vibrations translational vibrations of the molecules at their sites and rotational vibrations about their main inertial axes, so-called librations. [Pg.37]

In this contribution the concept of instantaneous normal modes is applied to three molecular liquid systems, carbon monoxide at 80 K and carbon disulphide at ambient temperature and two different densities. The systems were chosen in this way because pairs of them show similarities either in structural or in dynamical properties. The systems and their simulation are described in the following section. Subsequently two different types of molecular coordinates are used cis input to normal mode calculations, external, i.e. translational and rotational coordinates, and internal, i.e. vibrational coordinates of strongly infrared active modes, respectively. The normal mode spectra are related quantitatively to molecular properties and to those of liquid structure and dynamics. Finally a synthesis of both calculations is attempted on qualitative grounds aiming at the treatment of vibrational dephcising effects. [Pg.158]


See other pages where Molecular vibration, infrared active is mentioned: [Pg.31]    [Pg.208]    [Pg.51]    [Pg.9]    [Pg.81]    [Pg.67]    [Pg.68]    [Pg.84]    [Pg.132]    [Pg.146]    [Pg.134]    [Pg.118]    [Pg.189]    [Pg.47]    [Pg.45]    [Pg.328]    [Pg.208]    [Pg.108]    [Pg.128]    [Pg.150]    [Pg.191]    [Pg.247]    [Pg.668]    [Pg.154]    [Pg.348]    [Pg.175]    [Pg.215]    [Pg.146]    [Pg.628]    [Pg.190]    [Pg.191]    [Pg.157]    [Pg.164]    [Pg.45]   


SEARCH



Active vibrations

Infrared active

Molecular activity

Molecular infrared

Molecular vibrations

Vibration infrared active

Vibrational infrared

Vibrational molecular

© 2024 chempedia.info