Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Molecular clouds star formation

One of the most fruitful application of laboratory microwave spectroscopy over the last twenty years is the analysis of the molecular content of interstellar clouds. These clouds contain gas (99% in mass) which has been mostly studied by radioastronomy, and dust, whose content has been analysed mostly by IR astronomy. The clouds rich in molecular content are dense or dark clouds (they present a large visual extinction), with a gas density of 10 -10 molecules cm", and temperatures of T < 50K. At these low temperatures only the low-lying quantum states of molecules can be thermally (or collisionally) excited, i.e. rotational levels. Spontaneous emission from these excited states occurs at microwave wavelengths. In some warm regions of dense clouds (star formation cores) the absorption of IR radiation produces rotational emission in excited vibrational states. Other rich chemical sources are the molecular clouds surrounding evolved old stars, such as IRC-i-10216, and called circumstellar clouds. [Pg.143]

Giant molecular clouds the GMCs have a lifetime of order 106—10s years and are the regions of new star formation. The Orion nebula (Orion molecular cloud, OMC) is some 50 ly in diameter and 1500 ly from Earth. The temperature within the cloud is of order 10 K and the atomic density is 106 cm-3. The chemical composition is diverse and contains small diatomic molecules, large polyatomic molecules and dust particles covered with a thick ice mantle. [Pg.121]

The lifetime of the molecular cloud is considered to be a time line running from cloud formation, star evolution and finally dispersion in a period that is several tci. The chemistry of the TMC and, to a good approximation, all molecular clouds must then be propagated over a timescale of at most 20 million years. The model must then investigate the chemistry as a function of the age of the cloud, opening the possibility of early-time chemistry and hence species present in the cloud being diagnostic of the age of the cloud. The model should then expect to produce an estimated lifetime and the appropriate column densities for the known species in the cloud. For TMC-1 the species list and concentrations are shown in Table 5.4. [Pg.146]

There are some advantages of the temporal models of cloud chemistry associated with the concentrations of molecules at different times. Can we learn about the age of the cloud by its chemical composition or the age of an embedded star by the chemistry observed towards the object Can the molecular environment be understood from the inventory of chemicals Are there chemical diagnostics for planetary formation, star formation or even black holes All of these questions are at the frontier of Astrochemistry. [Pg.148]

Concepts Solar nebula The collapsing giant molecular cloud that leads to the formation of a star, specifically our Sun with its associated debris in the form of meteorites, meteors and comets... [Pg.190]

Cycle of star formation The collapse of a giant molecular cloud forms a star nuclear synthesis within the star produces more elements the star ages and ultimately dies in a supernova event elements are thrown into the interstellar medium to form a giant molecular cloud. [Pg.309]

In truth, star formation from molecular clouds is no easy subject to study. This is because the processes involved change the density from 10 g cm to about 1 g cm within a space of only a few tens of millions of years. Only the force of gravity, whose long range plays a key role, is able to produce such staggering compression rates. [Pg.124]

Several different types of this dust are distinguished by astronomers. On average, interstellar dust resides in widely separated diffuse clouds. But there are also dense regions of gas and dust into which little ultraviolet radiation can penetrate, thereby providing an environment for the formation of complex molecules these are referred to as molecular clouds. Clouds of particles expelled by cooler stars into the regions around them are called circumstellar... [Pg.457]

In recent years, a new source of information about stellar nucleosynthesis and the history of the elements between their ejection from stars and their incorporation into the solar system has become available. This source is the tiny dust grains that condensed from gas ejected from stars at the end of their lives and that survived unaltered to be incorporated into solar system materials. These presolar grains (Fig. 5.1) originated before the solar system formed and were part of the raw materials for the Sun, the planets, and other solar-system objects. They survived the collapse of the Sun s parent molecular cloud and the formation of the accretion disk and were incorporated essentially unchanged into the parent bodies of the chondritic meteorites. They are found in the fine-grained matrix of the least metamorphosed chondrites and in interplanetary dust particles (IDPs), materials that were not processed by high-temperature events in the solar system. [Pg.120]

Another idea under investigation can be labeled self enrichment of the molecular cloud. The idea uses the observation that in a giant molecular cloud, serial star formation may occur, where the massive stars in the first batch of stars to form explode as supernova and trigger a second round of star formation, the massive stars of which explode and trigger yet another round of star formation. As each supernova explodes, it dumps short-lived nuclides... [Pg.487]

Allamandola and Hudgins have considered the formation of complex organic species in ice matrices and provided a summary of the photochemical evolution on those ices found in the densest regions of molecular clouds, the regions where stars and planetary systems are formed 42 Ultraviolet photolysis of these ices produces many new compounds, some of which have prebiotic possibilities. These compounds might have played a part in organic chemistry on early Earth. [Pg.94]

Stars form in dense cores within giant molecular clouds (see Fig. 1.4, Alves et al. 2001). About 1 % of their mass is in dust grains, produced in the final phases of stellar evolution. Molecular clouds are complex entities with extreme density variations, whose nature and scales are defined by turbulence. These transient environments provide dynamic reservoirs that thoroughly mix dust grains of diverse origins and composition before the violent star-formation process passes them on to young stars and planets. Remnants of this primitive dust from the Solar System formation exist as presolar grains in primitive chondritic meteorites and IDPs. [Pg.8]


See other pages where Molecular clouds star formation is mentioned: [Pg.114]    [Pg.114]    [Pg.4]    [Pg.5]    [Pg.18]    [Pg.85]    [Pg.113]    [Pg.195]    [Pg.359]    [Pg.80]    [Pg.152]    [Pg.153]    [Pg.267]    [Pg.275]    [Pg.11]    [Pg.113]    [Pg.25]    [Pg.110]    [Pg.113]    [Pg.206]    [Pg.313]    [Pg.314]    [Pg.314]    [Pg.314]    [Pg.315]    [Pg.317]    [Pg.367]    [Pg.485]    [Pg.485]    [Pg.490]    [Pg.127]    [Pg.128]    [Pg.128]    [Pg.129]    [Pg.142]    [Pg.122]    [Pg.132]    [Pg.132]    [Pg.189]    [Pg.288]   
See also in sourсe #XX -- [ Pg.141 ]




SEARCH



Clouds formation

Molecular cloud

Star formation

Star formation stars

© 2024 chempedia.info